Characterization and Xylanase Productivity of Streptomyces sp. YB914

Xylanase를 생산하는 Streptomyces sp. YB914의 특성과 효소 생산성

  • Yoon, Ki-Hong (Department of Food Science & Biotechnology, Woosong University)
  • 윤기홍 (우송대학교 식품생물과학과)
  • Published : 2009.12.28

Abstract

A strain YB914 was isolated from soil as a producer of the extracellular xylanase, which catalyzes the hydrolysis of oat spelt xylan. The strain YB914 was identified as Streptomyces sp. on the basis of its morphological, cultural and biochemical properties. The xylanase of culture filtrate was the most active at $55^{\circ}C$ and pH 5.5, and retained 80% of its maximum activity at the range of pH 4.5~7.0. In order to optimize the culture medium for xylanase production, ingredients of G.S.S medium were replaced by several carbohydrates. The carbohydrates such as oat spelt xylan, corn cob xylan, wheat bran and lactose increased the xylanase productivity of Streptomyces sp. YB914. However, xylanase production was greatly repressed by galactose or arabinose. The maximum xylanase productivity was reached to 48 U/mL in the modified medium containing 1% oat spelt xylan and 1.5% lactose.

토양으로부터 세포외로 xylanase를 분비 생산하는 방선균 YB-914가 분리되었으며, 형태, 배양, 생화학적 특성을 조사한 결과 Streptomyces 속 균주로 확인되었다. 분리균의 배양상등액에 존재하는 xylanase는 pH 5.5과 $55^{\circ}C$의 반응조건에서 반응성이 가장 높았으며, pH 4.5~7.0 범위에서 최대활성의 80% 이상을 나타냈다. Xylanase의 생산을 위한 배지를 최적화하기 위해서 G.S.S 배지성분을 여러 종류의 탄수화물로 대체하였다. Oat spelt xylan, corn cob xylan, 밀기울 및 유당과 같은 탄수화물은 Streptomyces sp. YB914의 xylanase 생산성을 증가시키는 것으로 확인되었으며, galactose와 arabinose는 효소 생산을 크게 억제하였다. Oat spelt xylan(1%)와 유당(1.5%)을 함유한 변형배지에서 xylanase의 최대생산성이 48 U/mL로 확인되었다.

Keywords

References

  1. Antonopoulos, V. T., M. Hernandez, M. E. Arias, E. Mavrakos, and A. S. Ball. 2001. The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Appl. Microbiol. Biotechnol. 57: 92-97 https://doi.org/10.1007/s002530100740
  2. Arias, E., H. Li, and R. Morosoli. 2007. Effect of protease mutations on the production of xylanases in Streptomyces lividans. Streptomyces olivaceoviridis E-86, Can. J. Microbiol. 53: 695-701 https://doi.org/10.1139/W07-024
  3. Cheng, H. L., C. Y. Tsai, H. J. Chen, S. S. Yang, and Y. C. Chen. 2009. The identification, purification, and characterization of STXF10 expressed in Streptomyces thermonitrificans NTU-88. Appl. Microbiol. Biotechnol. 82: 681-689 https://doi.org/10.1007/s00253-008-1803-9
  4. De Lemos Esteves, F., V. Ruelle, J. Lamotte-Brasseur, B. Quinting, and J. -M. Frere. 2004. Acidophilic adaptation of family 11 endobeta1,4xylanases: modeling and mutational analysis. Protein Sci. 13: 1209-1218 https://doi.org/10.1110/ps.03556104
  5. Godden, B., T. Legon, P. Helvenstein, and M. Penninckx. 1989. Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose. J. Gen. Microbiol. 135: 285-292
  6. Goodfellow, M., T. Cross, and H. A. Lechevalier. 1989. Suprageneric classification of Actinomyces, pp 2333-2450. In S.T. Williams, M.E. Sharpe, and J.G. Holt (eds.), Bergey's Mannual of Systematic Bacteriology, vol 4, Williams and Wilkins, Baltimore, MD, USA
  7. Kansoh, A. L. and Z. A. Nagieb. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103-114 https://doi.org/10.1023/B:ANTO.0000020281.73208.62
  8. Kim, B., A. M. al-Tai, S. B. Kim, P. Somasundaram, and M. Goodfellow. 2000. Streptomyces thermocoprophilus sp. nov., a cellulase-free endo-xylanase-producing streptomycete. Int. J. Syst. Evol. Microbiol. 50: 505-509 https://doi.org/10.1099/00207713-50-2-505
  9. Lee, E. -H., C. -J. Kim, and K.-H. Yoon. 2005. Characterization and xylanase productivity of Streptomyces sp. WL-2. Kor. J. Microbiol. Biotechnol. 33: 178-183
  10. Li, N., K. Meng, Y. Wang, P. Shi, H. Luo, Y. Bai, P. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240 https://doi.org/10.1007/s00253-008-1533-z
  11. Li, N., P. Yang, Y. Wang, H. Luo, K. Meng, N. Wu, Y. Fan, and B. Yao. 2009. Cloning, expression,and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11. J. Microbiol. Biotechnol. 18: 410-416
  12. Mackenzie, C.R., D. Bilous, H. Schneider, and K. G. Johnson. 1987. Induction of cellulolytic and xylanolytic enzyme xystems in Streptomyces spp. Appl. Environ. Microbiol. 53: 2835-2839
  13. Mansour, F. A., A. A. Shereif, M. M. Nourel-Dein, M. I. Abou-Dobara, and A. S. Ball. 2003. Purification and characterization of xylanase from a thermophilic Streptomyces sp. K37. Acta Microbiol. Pol. 52: 159-172
  14. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  15. Ninawe, S. and R. C. Kuhad. 2005. Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. J. Appl. Microbiol. 99: 1141-1148 https://doi.org/10.1111/j.1365-2672.2005.02711.x
  16. Shirling, E. B. and D. Gottlieb. 1966. Methods for the characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313-340 https://doi.org/10.1099/00207713-16-3-313
  17. Techapun, C., N. Poosaran, M. Watanabe, and K. Sasaki. 2003. Optimization of aeration and agitation rates to improve cellulase-free xylanase production by thermotolerant Streptomyces sp. Ab106 and repeated fed-batch cultivation using agricultural waste. J. Biosci. Bioeng. 95: 298-301 https://doi.org/10.1016/S1389-1723(03)80033-6
  18. Techapun, C., T. Charoenrat, N. Poosaran, M. Watanabe, and K. Sasak. 2002. Thermostable and alkaline-tolerant cellulasefree xylanase produced by thermotolerant Streptomyces sp. Ab106. J. Biosci. Bioeng. 93: 431-433
  19. Williams, S. T., M. Goodfellow, G. Alderson, E. M. H. Wellington, P. H. A. Sneath, and M. Sackin. 1983. Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743-1813