Browse > Article

Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran  

Lee, Jun-Ho (Division of Animal Resources and Life Science, Sangji University)
Choi, Suk-Ho (Division of Animal Resources and Life Science, Sangji University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.12, 2006 , pp. 1856-1861 More about this Journal
Abstract
A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.
Keywords
Xylanase; Bacillus sp; rice bran; xylan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Adeola, O. and M. R. Bedford. 2004. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 92: 87-94   DOI   ScienceOn
2 Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A 99 in solid state fermentation. Enzyme Microbiol. Technol. 21: 12-17   DOI   ScienceOn
3 Aspinali, G. O. 1959. Structural chemistry of the hemicelluloses. Adv. Carbohydr. Chem. 14: 429-468
4 Bataillon, M., A. P. N. Cardinali, and F. Duchiron. 1998. Production of xylanases from a newly isolated alkalophilic thermophilic Bacillus sp. Biotechnol. Lett. 20: 1067-1071   DOI   ScienceOn
5 Blanco, A., T. Vidal, J. F. Colom, and F. I. J. Pastor. 1995. Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23. Appl. Environ. Microbiol. 61: 4468-4470
6 Collins, T., G. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Mirobiol. Rev. 29: 3-23   DOI   ScienceOn
7 Cowieson, S. J., M. Hruby, and M. Faurschou Isaksen. 2005. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 46: 717- 724   DOI   ScienceOn
8 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
9 Ratanakhanokchal, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
10 Wang, Z. R., S. Y. Qiao, W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84: 875-881   DOI
11 Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechonol. 3: 286-290   DOI   ScienceOn
12 Mandels, M. and D. Stenberg. 1976. Recent advances in cellulase technology. J. Ferment. Technol. 54: 267-286
13 Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI
14 Graham, H., P. H. Simmins, and J. Sands. 2003. Reducing environmental pollution using animal feed enzymes. Commun. Agric. Appl. Biol. Sci. 68: 285-289
15 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338   DOI
16 Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835   DOI   ScienceOn
17 Balows, A., W. J. Hausler Jr., K. L. Herrmann, H. D. Isenberg, and H. J. Shadomy. 1991. Manual of Clinical Microbiology, 5th Ed. American Society of Microbiology, U.S.A
18 Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591   DOI
19 Esteben, R., J. R. Villanueva, and T. G. Villa. 1992. ${\beta}-_D-$Xylanases of Bacillus circulans WL-12. Can. J. Microbiol. 28: 733-793   DOI
20 Johnvesly, B., S. Virupakshi, G. N. Patil, Ramalingam, and G. R. Naik. 2002. Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB- 99. J. Microbiol. Biotechnol. 12: 153-156
21 Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456   DOI
22 Bernier, R. Jr., M. Desrochers, L. Jurasek, and M. G. Paice. 1983. Isolation and characterization of a xylanase from Bacillus subtilis. Appl. Environ. Microbiol. 46: 511-514
23 Balakrishnan, H., M. C. Srinivasan, and M V. Rele. 1997. Extracellular protease activities in relation to xylanase excretion in alkalophilic Bacillus sp. Biotechnol. Lett. 18: 599-601
24 Krishina, C. 2005. Solid-state fermentation systems - an overview. Crit. Rev. Biotechnol. 25: 1-30   DOI   ScienceOn
25 Sa-Pereira, P., M. Costa-Ferreira, and M. R. Aires-Barros. 2002. Enzymatic properties of a neutral endo-1,3(4)-$\beta$-xylanase Xyl II from Bacillus subtilis. J. Biotechnol. 94: 265-275   DOI   ScienceOn
26 Tachaapaikoon, C., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S.-K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618   과학기술학회마을
27 Wong, K. K. Y. and J. N Saddler. 1992. Application of hemicellulases in the food, feed, and pulp and paper industries, pp. 127-143. In P. P. Coughlen and G. P. Hazlewood (eds.). Hemicellulose and Hemicellulases. Portland Press, London
28 Dimitrov, P. L., M. S. Kambourova, R. D. Mandeva, and E. I. Emanuilova. 1997. Isolation and characterization of xylandegrading alkali-tolerant thermophiles. FEMS Microbiol. Lett. 157: 27-30   DOI
29 Lee, Y.-E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
30 Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725- 1730
31 Kim, K. C., S.-S. Yoo, Y.-A Oh, and S.-J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
32 Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59: 2311-2316