• Title/Summary/Keyword: x-ray photoelectron

Search Result 1,472, Processing Time 0.035 seconds

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

A study on the structure of Si-O-C thin films with films size pore by ICPCVD (ICPCVD방법에 의한 나노기공을 갖는 Si-O-C 박막의 형성에 관한 연구)

  • Oh, Teresa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.477-480
    • /
    • 2002
  • Si-O-C(-H) thin film with a tow dielectric constant were deposited on a P-type Si(100) substrate by an inductively coupled plasma chemical vapor deposition (ICPCVD). Bis-trimethylsilymethane (BTMSM, H$_{9}$C$_3$-Si-CH$_2$-Si-C$_3$H$_{9}$) and oxygen gas were used as Precursor. Hybrid type Si-O-C(-H) thin films with organic material have been generated many voids after annealing. Consequently, the Si-O-C(-H) films can be made a low dielectric material by the effect of void. The surface characterization of Si-O-C(-H) thin films were performed by SEM(scanning electron microscope). The characteristic analysis of Si-O-C(-H) thin films were performed by X-ray photoelectron spectroscopy (XPS).

  • PDF

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes (백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과)

  • Kim, Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

CD34 Monoclonal Antibody-Immobilization on Polyurethane Surface by Poly(PEGA-co-BMA) Coating (PEGA/BMA 공중합체의 코팅을 통해 CD34 단일클론항체가 고정화된 폴리우레탄 표면)

  • Joung, Yoon-Ki;Hwang, In-Kyu;Park, Ki-Dong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.602-607
    • /
    • 2009
  • A polyurethane (PU) surface enabling in vivo endothelialization via endothelial progenitor cell (EPC) capture was prepared for cardiovascular applications. To introduce CD34 monoclonal antibody (mAb) inducing EPC adhesion onto a surface, poly (poly (ethylene glycol) acrylate-co-butyl methacrylate) and poly (PEGA-co-BMA) were synthesized and then coated on a surface of PU, followed by immobilizing CD34 mAb. $^1H$-NMR analysis demonstrated that poly(PEGA-co-BMA) copolymers with a desired composition were synthesized. Poly(PEGA-co-BMA)-coated PU was much more effective for the immobilization of CD34 mAb, comparing with PEG-grafted PU prepared in our previous study, as demonstrated by that surface density and activity of CD34 mAb increased over 32 times. Physico-chemical properties of modified PU surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle, and atomic force microscopy (AFM). The results demonstrated that the poly(PEGA-co-BMA) coating was effective for CD34 mAb immobilization and feasible for applying to cardiovascular biomaterials.

Effect of Anodic Oxidation of H2SO4/HNO3 Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins (탄소섬유와 에폭시 기지의 계면강도 증가를 위한 황산/질산 양극산화에 관한 영향)

  • Moon, Cheol-Whan;Jung, Gun;Im, Seung-Soon;Nah, Changwoon;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this work, the anodic oxidation of carbon fibers was carried out to enhance the mechanical interfacial properties of carbon fibers-reinforced epoxy matrix composites. The surface characteristics of the carbon fibers were studied by FTIR, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Also, the mechanical interfacial properties of the composites were studied with interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and critical strain energy release rate ($G_{IC}$). The anodic oxidation led to a significant change in the surface characteristics of the carbon fibers. The anodic oxidation of carbon fiber improved the mechanical interfacial properties, such as ILSS, $K_{IC}$, and $G_{IC}$ of the composites. The mechanical interfacial properties of the composites anodized at 20% sulfuric/nitric (3/1) were the highest values among the anodized carbon fibers. These results were attributed to the increase of the degree of adhesion at interfaces between the carbon fibers and the matrix resins in the composite systems.

Surface Modification of Polystyrene (PS) by Atmospheric Pressure Plasma (상압 플라즈마를 이용한 Polystyrene (PS)의 표면개절)

  • Lee, Jong-Su;Shin, Hyun-Seok;Seok, Jin-Woo;Jang, Gyu-Wan;Beag, Yeong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Hydrophilic Surface modification of Polysarene (PS) was performed by Atmospheric Pressure Plasma (APP). Air or 0, gases were used for carrier gases and RF power was changed from 150 to 350 W. We controlled the treatment time as 1 time to 4 time passing through the plasma region. when the carrier gas was air, the water contact angle on the PS surface was decreased from $91^{\circ}$ to $20^{\circ}$. And the surface energy increased from 45.74 dyne/cm to 68.48 dyne/cm. In case of the $O_2$ plasma treatment, at 300 W of RF power and 4 times treatment, the water contact angle on the PS. Surface was decreased from $91^{\circ}$ to $17^{\circ}$ and the surface energy was increased from 45.74 dyne/cm to 69.73 dyne/cm. The surface energy was increased by polar force not by dispersion force. Improvement of surface properties can be explained by the formation of new hydrophilic groups which is identified as C-O, C=O by XPS analysis. The contact angle of APP treated PS surface kept in air was increased with time elapse, but maintained same value when it was kept in water. We treated the PS surface by APP and deposited Cu as $4,000\;{\AA}$ and $8,000\;{\AA}$ by thermal evaporation. The adhesion between sample and Cu thin film improvement of treated PS surface against untreated sample. could be verifiable by Tape test (ASTM D3359)

Simulation of Energy Resolution of Time of Flight System for Measuring Positron-annihilation induced Auger Electrons (양전자 소멸 Auger 전자 에너지 측정을 위한 Time of Flight의 분해도 향상에 관한 이론적 연구)

  • Kim, J.H.;Yang, T.K.;Lee, C.Y.;Lee, B.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.311-316
    • /
    • 2008
  • Since the presence of the chemical impurities and defect at surfaces and interfaces greatly influence the properties of various semiconductor devices, an unambiguous chemical characterization of the metal and semiconductor surfaces become more important in the view of the miniaturization of the devices toward nano scale. Among the various conventional surface characterization tools, Electron-induced Auger Electron Spectroscopy (EAES), X-ray Photoelectron Spectroscopy (XPS) and Secondary Electron Ion Mass Spectroscopy (SIMS) are being used for the identification of the surface chemical impurities. Recently, a novel surface characterizaion technique, Positron-annihilation induced Auger Electron Spectroscopy (PAES) is introduced to provide a unique method for the analysis of the elemental composition of the top-most atomic layer. In PAES, monoenergetic positron of a few eV are implanted to the surface under study and these positrons become thermalized near the surface. A fraction of the thermalized positron trapped at the surface state annihilate with the neighboring core-level electrons, creating core-hole excitations, which initiate the Auger process with the emission of Auger electrons almost simultaneously with the emission of annihilating gamma-rays. The energy of electrons is generally determined by employing ExB energy selector, which shows a poor resolution of $6{\sim}10eV$. In this paper, time-of-flight system is employed to measure the electrons energy with an enhanced energy resolution. The experimental result is compared with simulation results in the case of both linear (with retarding tube) and reflected TOF systems.

The Effect of Pd Coating on Electron Emission from Silicon Field Emitter Arrays (Pd 코팅이 실리콘 전계 방출 어레이의 전자 방출에 미치는 영향)

  • Lee, Jong-Ram;O, Sang-Pyo;Han, Sang-Yun;Gang, Seung-Ryeol;Lee, Jin-Ho;Jo, Gyeong-Ik
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2000
  • Uniform silicon tip arrays were fabricated using the reactive ion etching followed by the reoxidation sharpening, and the effect of Pd-coated layer on electron emission characteristics was studied. The electron emission from Si field emitter arrays(FEAs) was a little, but improved by removing surface oxide on the FEA, but pronounced drastically by coating a $100-{\AA}-thick$ Pd metal layer. The turn-on voltage in the Pd-coated Si FEAs was reduced by 30 V in comparison with that in uncoated ones. This results from the increase of surface roughness at the tip apex by the Pd coating on Si FEA, via the decrease of the apex radius at which electrons are emitting. The Pd-coated emitters showed superior operating stability over a wide current range to that of the uncoated ones. This suggests that Pd coating enhances the high temperature stability and the surface inertness Si FEA.

  • PDF

Characteristics of Silicon Oxide Thin Films Prepared by Atomic Layer Deposition Using Alternating Exposures of SiH2Cl2 and O3 (SiH2Cl2 와 O3을 이용한 원자층 증착법에 의해 제조된 실리콘 산화막의 특성)

  • Lee Won-Jun;Lee Joo-Hyeon;Han Chang-Hee;Kim Un-Jung;Lee Youn-Seung;Rha Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.90-93
    • /
    • 2004
  • Silicon dioxide thin films were deposited on p-type Si (100) substrates by atomic layer deposition (ALD) method using alternating exposures of $SiH_2$$Cl_2$ and $O_3$ at $300^{\circ}C$. $O_3$ was generated by corona discharge inside the delivery line of $O_2$. The oxide film was deposited mainly from $O_3$ not from $O_2$, because the deposited film was not observed without corona discharge under the same process conditions. The growth rate of the deposited films increased linearly with increasing the exposures of $SiH_2$$Cl_2$ and $O_3$ simultaneously, and was saturated at approximately 0.35 nm/cycle with the reactant exposures over $3.6 ${\times}$ 10^{9}$ /L. At a fixed $SiH_2$$Cl_2$ exposure of $1.2 ${\times}$ 10^{9}$L, growth rate increased with $O_3$ exposure and was saturated at approximately 0.28 nm/cycle with $O_3$ exposures over$ 2.4 ${\times}$ 10^{9}$ L. The composition of the deposited film also varied with the exposure of $O_3$. The [O]/[Si] ratio gradually increased up to 2 with increasing the exposure of $O_3$. Finally, the characteristics of ALD films were compared with those of the silicon oxide films deposited by conventional chemical vapor deposition (CVD) methods. The silicon oxide film prepared by ALD at $300^{\circ}C$ showed better stoichiometry and wet etch rate than those of the silicon oxide films deposited by low-pressure CVD (LPCVD) and atmospheric-pressure CVD (APCVD) at the deposition temperatures ranging from 400 to $800^{\circ}C$.