Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.8.383

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light  

Zhu, Hai-Tao (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Ren, Qi-Fang (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Jin, Zhen (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Ding, Yi (Anhui Advanced Building Materials Engineering Laboratory, Anhui Jianzhu University)
Liu, Xin-Yu (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University)
Ni, Xi-Hui (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University)
Han, Meng-Li (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University)
Ma, Shi-Yu (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University)
Ye, Qing (Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.30, no.8, 2020 , pp. 383-392 More about this Journal
Abstract
In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.
Keywords
AgCl/$Ag_3PO_4$/diatomite; microemulsion; visible light; photocatalysis degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zhang, K. Yu, Y. Yu, L.-L. Lou, Z. Yang, J. Yang and S. Liu, J. Mol. Catal. A: Chem., 391, 12 (2014).   DOI
2 L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang and W. Cui, Appl. Catal., B, 183, 133 (2016).   DOI
3 L. Tian, X. Yang, X. Cui, Q. Liu and H. Tang, Appl. Surf. Sci., 463, 9 (2019).   DOI
4 H. Tang, Y. Fu, S. Chang, S. Xie and G. Tang, Chin. J. Catal., 38, 337 (2017).   DOI
5 X. Li, P. Xu, M. Chen, G. Zeng, D. Wang, F. Chen, W. Tang, C. Chen, C. Zhang and X. Tan, Chem. Eng. J., 366, 339 (2019).   DOI
6 P. Lin, J. Shen, C. Prasad, H. Tang, Q. Liu and M. Zhang, Ceram. Int., 45, 21120 (2019).   DOI
7 H. Cai, L. Sun, Y. Wang, T. Song, M. Bao and X. Yang, Chem. Eng. J., 369, 1078 (2019).   DOI
8 F. Chen, Q. Yang, X. Li, G. Zeng, D. Wang, C. Niu, J. Zhao, H. An, T. Xie and Y. Deng, Appl. Catal., B, 200, 330 (2017).   DOI
9 Z. Hu, J. Lyu and M. Ge, Mater. Sci. Semicond. Process., 105, 104731 (2020).   DOI
10 C. Liang, L. Zhang, H. Guo, C.-G. Niu, X.-J. Wen, N. Tang, H.-Y. Liu, Y.-Y. Yang, B.-B. Shao and G.-M. Zeng, Chem. Eng. J., 361, 373 (2019).   DOI
11 C. An, S. Peng and Y. Sun, Adv. Mater., 22, 2570 (2010).   DOI
12 Y. A. Wu, L. Li, Z. Li, A. Kinaci, M. K. Chan, Y. Sun, J. R. Guest, I. M. Nulty, T. Rajh and Y. Liu, ACS Nano., 10, 3738 (2016).   DOI
13 Z. Ruan, G. Liu, J. Shu, C. Ren and Z. Wang, RSC Adv., 9, 5858 (2019).   DOI
14 S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng and J. Xu, ACS Appl. Mater. Interfaces., 6, 22116 (2014).   DOI
15 S. Lou, W. Wang, L. Wang and S. Zhou, J. Alloys Compd., 781, 508 (2019).   DOI
16 Y. Tang, V. P. Subramaniam, T. H. Lau, Y. Lai, D. Gong, P. D. Kanhere, Y. H. Cheng, Z. Chen and Z. Dong, Appl. Catal., B, 106, 577 (2011).   DOI
17 X. Zhang, J. Zhou, D. Yang, S. Chen, J. Huang and Z. Li, Catal. Today, 335, 228 (2019).   DOI
18 D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun and L. Gao, Nanoscale, 4, 5431 (2012).   DOI
19 A. F. D. Namor, A. E. Gamouz, S. Frangie, V. Martinez, L. Valiente and O. A. Webb, J. Hazard. Mater., 241, 14 (2012).   DOI
20 B. Wang, F. C. Godoi, Z. Sun, Q. Zeng, S. Zheng and R. L. Frost, J. Colloid Interface Sci., 438, 204 (2015).   DOI
21 P. Tanniratt, T. Wasanapiarnpong, C. Mongkolkachit and P. Sujaridworakun, Ceram. Int., 42, 17605 (2016).   DOI
22 H. B. Fan, Q. F. Ren, S. L. Wang, Z. Jin and Y. Ding, J. Alloys Compd., 775, 845 (2019).   DOI
23 H. B. Fan, Q. F. Ren, M. Yu, S. L. Wang, J. Y. Cao, Z. Jin and Y. Ding, Mater. Rev. B: Res. Pap., 33, 3383 (2019).
24 P. Zhu, Y. Chen, M. Duan, M. Liu and P. Zou, Powder Technol., 336, 230 (2018).   DOI
25 J. Guo, H. Shi, X. Huang, H. Shi and Z. An, J. Colloid Interface Sci., 515, 10 (2018).   DOI
26 L. Zhou, W. Zhang, L. Chen, H. Deng and J. Wan, Catal. Commun., 100, 191 (2017).   DOI
27 W. W. Wang, H. E. Jing, L. I. Jiao and W. W. Cai, J. Inorg. Mater., 32, 263 (2017).   DOI
28 H. Li, Y. Zhang, Q. Zhang, Y. Wang, Y. Fan, X. Gao and J. Niu, Appl. Surf. Sci., 490, 481 (2019).   DOI
29 X. Yao and X. Liu, J. Hazard. Mater., 280, 260 (2014).   DOI
30 M. Ao, K. Liu, X. Tang, Z. Li, Q. Peng and J. Huang, Beilstein. J. Nanotechnol., 10, 1412 (2019).   DOI
31 Z. M. Sun, Y. Yan, G. X. Zhang, Z. Y. Wu and S. L. Zheng, Adv. Powder Technol., 26, 595 (2015).   DOI
32 O. Mehraj, N. A. Mir, B. M. Pirzada and S. Sabir, Appl. Surf. Sci., 332, 419 (2015).   DOI
33 R. Zhang, Q. Han, Y. Li, Y. Cai, T. Zhang, Y. Liu and X. Zhu, J. Alloys Compd., 810, 151868 (2019).   DOI
34 J. Yan, Z. Song, X. Wang, Y. Xu, W. Pu, H. Xu, S. Yuan and H. Li, Appl. Surf. Sci., 466, 70 (2019).   DOI
35 M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, Int. J. Hydrogen Energy, 40, 1016(2015).   DOI
36 W. S. Wang, H. Du, R. X. Wang, T. Wen and A. W. Xu, Nanoscale, 5, 3315 (2013).   DOI
37 L. Ye, J. Liu, C. Gong, L. Tian, T. Peng and L. Zan, ACS Catal., 2, 1677 (2012).   DOI
38 Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Stuart-Williams, H. Yang, J. Cao, W. Luo, Z. Li, Y. Liu and R. L. Withers, Nat. Mater., 9, 559 (2010).   DOI
39 Y. Lin, S. Wu, C. Yang, M. Chen and X. Li, Appl. Catal., B, 245, 71 (2019).   DOI
40 J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff and D. W. C. MacMillan, Nature, 524, 330 (2015).   DOI
41 Y. Bi, S. Ouyang, N. Umezawa, J. Cao and J. Ye, J. Am. Chem. Soc., 133, 6490 (2011).   DOI
42 C. Chen, H. Zeng, M. Yi, G. Xiao, S. Xu, S. Shen and B. Feng, Appl. Catal., B, 252, 47 (2019).   DOI
43 Y. Chen, P. Zhu, M. Duan, J. Li, Z. Ren and P. Wang, Appl. Surf. Sci., 486, 198 (2019).   DOI