• Title/Summary/Keyword: wobbling

Search Result 25, Processing Time 0.024 seconds

Study on Vertical Dynamics Compensation for Wobbling Effect Mitigation of Electrostatically Levitated Gyroscope

  • Lee, Jongmin;Song, Hyungmin;Sung, Sangkyung;Kim, Chang Joo;Lee, Sangwoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.293-301
    • /
    • 2014
  • We present a study of vertical dynamics control of an electrostatically levitated gyro-accelerometer considering the wobbling effect and propose a tilt stabilization method with newly introduced control electrodes. Typically, a rotor in a vacuum rotates at high velocity, which may create a drift rate and lead to displacement instability due to the tilt angle of the rotor. To analyze this, first we set up a vertical dynamic equation and determined simulation results regarding displacement control. After deriving an equation for drift dynamics, we analyzed the drift rate of the rotor and the wobbling effect for displacement control quantitatively. Then, we designed new sub-electrodes for moment control that will decrease the drift amplitude of wobbling dynamics. Finally, a simulation study demonstrated that the vertical displacement control with the wobbling compensation electrodes mitigated the rotor's drift rate, showing the effectiveness of the newly proposed control electrodes.

Development of Human Body Vibration Model Including Wobbling Mass (Wobbling Mass를 고려한 인체 진동 모텔의 개발)

  • 김영은;백광현;최준희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.193-200
    • /
    • 2002
  • Simple spring-damper-mass models have been widely used to investigate whole-body vortical biodynamic response characteristics of the seated vehicle driver. Most previous models have not considered the effect of wobbling masses; i.e. heart, lungs, liver, intestine, etc. In this study, 4 -DOF seated driver model including one non-rigid mass representing wobbling visceral mass, 5-DOF model including intestine, and 10-DOF model including five lumbar vertebral masses were proposed. The model parameters were identified by a combinatorial optimization technique. simulated annealing method. The objective function was chosen as the sum of error between model response of seat-to-head transmissibility and driving point mechanical impedance and those of experimental data for subjects seated erect without backrest support. The model response showed a good agreement with the experimental response characteristics. Using a 10-DOF model, calculated resonance frequency of lumbar spine at 4Hz was matched well with experimental results of Panjabi et al.

Study on the Video Stabilizer based on a Triplet CNN and Training Dataset Synthesis (Triplet CNN과 학습 데이터 합성 기반 비디오 안정화기 연구)

  • Yang, Byongho;Lee, Myeong-jin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.428-438
    • /
    • 2020
  • The jitter in the digital videos lowers the visibility and degrades the efficiency of image processing and image compressing. In this paper, we propose a video stabilizer architecture based on triplet CNN and a method of synthesizing training datasets based on video synthesis. Compared with a conventional deep-learning video stabilization method, the proposed video stabilizer can reduce wobbling distortion.

Initial Experience of Patient-Specific QA for Wobbling and Line-Scanning Proton Therapy at Samsung Medical Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eun Hyuk;Park, Seyjoon;Hong, Chae-Seon;Kim, Dae-Hyun;Lee, Boram;Lee, Woojin;Choi, Doo Ho;Lim, Do Hoon;Pyo, Hong Ryull;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Purpose: To report the initial experience of patient-specific quality assurance (pQA) for the wobbling and line-scanning proton therapy at Samsung Medical Center. Materials and Methods: The pQA results of 89 wobbling treatments with 227 fields and 44 line-scanning treatments with 118 fields were analyzed from December 2015 to June 2016. For the wobbling method, proton range and spread-out Bragg peak (SOBP) width were verified. For the line-scanning method, output and two-dimensional dose distribution at multiple depths were verified by gamma analysis with 3%/3 mm criterion. Results: The average range difference was -0.44 mm with a standard deviation (SD) of 1.64 mm and 0.1 mm with an SD of 0.53 mm for the small and middle wobbling radii, respectively. For the line-scanning method, the output difference was within ${\pm}3%$. The gamma passing rates were over 95% with 3%/3 mm criterion for all depths. Conclusions: For the wobbling method, proton range and SOBP width were within the tolerance levels. For the line-scanning method, the output and two-dimensional dose distribution showed excellent agreement with the treatment plans.

Stability of the axially compliant fixed scroll in scroll compressors (스크롤 압축기에서 축방향 순응하는 고정부재의 안정성)

  • Kim, H.J.;Lee, W.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • This study presents a way of improving the stability of fixed scroll in scroll compressors. For the scroll compressor whose fixed scroll is designed to move in the axial direction for the axial compliance, the fixed scroll is under the influence of the overturning moment produced by internal gas forces. Unless the overturning moment is properly compensated by the moments of reaction forces at the suspension of the fixed scroll to the compressor frame, the fixed scroll would exhibit wobbling motion, increasing gas leakage through the gap induced by the wobbling of the fixed scroll between the two scroll members. The conditions on which the wobbling motion can be suppressed have been found analytically; The axial position of the fixed scroll suspension should be made within a certain range. The upper limit of this range is the axial location for the o-rings which are inserted between the fixed scroll and the back pressure chamber to promote sealing for the gas in the back pressure chamber. And the lower limit is mainly determined by the magnitude of the axial sealing force. As long as the axial sealing force is not negative over all crank angles, the lower limit is not above the mid-height of the scroll wrap. Larger axial sealing force lower the lower limit.

  • PDF

Analysis of Treatment and Delay Times by Disease Site and Delivery Technique at Samsung Medical Center - Proton Therapy Center

  • Jo, Kwanghyun;Ahn, Sung Hwan;Chung, Kwangzoo;Cho, Sungkoo;Shin, Eunhyuk;Hong, Chae-Seon;Park, Seyjoon;Kim, Dae-Hyun;Lee, Boram;Lee, Woo-Jin;Seo, Se-Kwang;Jang, Jun-Young;Choi, Doo Ho;Lim, Do Hoon;Han, Youngyih
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.258-266
    • /
    • 2016
  • We have treated various disease sites using wobbling and scanning proton therapy techniques since December 2015 at the Samsung Medical Center. In this study, we analyze the treatment time for each disease site in 65 wobbling and 50 scanning patient treatments. Treatment times are longest for liver and lung patients using the respiratory gating technique in the wobbling treatment and for cranio-spinal irradiation in pediatric patients with anesthesia in the scanning treatment. Moreover, we analyze the number of incidents causing treatment delays and the corresponding treatment delay time. The X-ray panel was the main reason for delays in the wobbling treatment; this decreased continually from January to June 2016, related closely to the proficiency of the human operators involved. The main reason for delays in the scanning treatment was interlocks during scanning pattern delivery; this was resolved by proton machine engineers. Through this work, we hope to provide other institutes with useful insight for initial operation of their proton therapy machines.

Mathematical Model Development of Whole-body Vertical Vibration, Using a Simulated Annealing Method (Simulated Annealing 기법을 이용한 인체 수직 전신 진동 모델의 파라미터 선정)

  • Choi, Jun-Hee;Kim, Young-Eun;Baek, Kwang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.381-386
    • /
    • 2000
  • Simple spring-damper-mass models have been widely used to understand whole-body vertical biodynamic response characteristics of the seated vehicle driver. However, most previous models have not considered about the non-rigid masses(wobbling masses). A simple mechanical model of seated human body developed in this study included the torso represented by a rigid and a wobbling mass. Within the 0.5-20Hz frequency range and for excitation amplitudes maintained below $5ms^{-2}$, this 4-degree-of-freedom driver model is proposed to satisfy the measured vertical vibration response characteristics defined from a synthesis of published data for subjects seated erect without backrest support. The parameters are identified by using the combinatorial optimization technique, simulated annealing method. The model response was found to be provided a closer agreement with the response characteristics than previously published models.

  • PDF

Study of Uniform Beam Formation at ISOL Target Using TRANSPORT

  • Hong, Seong-Gwang;Kim, Jae-Hong;Kim, Jong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.174.2-174.2
    • /
    • 2013
  • 사이클로트론에서 가속된 70 MeV 양성자 빔은 stripper에서 인출된 후 ISOL 표적에 조사하게 된다. 이 때 희귀동위원소를 생산하기 위한 ISOL 표적의 온도는 평균 $2,000^{\circ}C$ 5%로 유지하여야 한다. 사용하고자 하는 원판형태의 우라늄 표적은 직경이 45 mm 이므로 50 mm 이상의 균일한 양성자 빔이 필요하다. 본 연구에서는 stripper에서부터 ISOL 표적 까지 빔전송에 필요한 최적 조건을 연구하였다. 총 길이는 15 m 이며 두 개의 dipole을 사용하여 빔을 90도 전환시키며 3개의 4중극전자석을 사용하였다. ISOL 표적에 균일한 빔을 조사하기 위해 wobbling 방법을 활용하여 직경 50 mm 의 균일빔을 발생하고자 한다. 빔 전송 프로그램 TRANSPORT을 이용하여 stripper에서 wobbler 전까지의 빔 광학을 계산한 결과를 보고자 하고 TRANSPORT의 결과를 TURTLE 프로그램에 적용시켜 ISOL 표적에서의 균일도를 5% 미만으로 유지하는 최적조건을 발표한다.

  • PDF

Analysis of the Antenna Pointing Instability of a Satellite in Spin-Stabilized Injection Mode

  • Kang, Ja-Young;Shin, Kwang-Keun
    • ETRI Journal
    • /
    • v.16 no.2
    • /
    • pp.27-41
    • /
    • 1994
  • A new mathematical model to predict the beam pointing instability of a nonconservative two-body satellite system in spinning injection mode has been developed by using Newton-Euler and projection methods. Since the on-axis and null axis of the omni antenna with toroidal pattern beam form a right angle, wobbling of the antenna on-axis is measured by determining the Euler angles which represent the orientation of the satellite's spin axis. Because of the complexity of the system which is a time varying, nonstationary, nonlinear dynamical system, a numerical method is used for the analysis. Computer simulation results present the effects of the mass distribution and internal mass motion on the antenna beam pointing.

  • PDF

Split sputter mode: a novel sputtering method for flat-panel display manufacturing

  • Pieralisi, Fabio;Hanika, Markus;Scheer, Evelyn;Bender, Marcus
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.89-92
    • /
    • 2011
  • Advanced static DC magnetron sputtering methods based on the magnet wobbling technique were investigated to achieve highly uniform and homogeneous metallization layers. The novel split sputter mode (SSM) method, wherein the deposition process is divided into two distinct steps, enables the AKT rotary cathode technology to provide excellent layer properties, while keeping a high production throughput. The effectiveness of theSSMtechnique was demonstrated through copper-coated large-area substrates.