• Title/Summary/Keyword: wireless remote control

Search Result 368, Processing Time 0.024 seconds

Efficient Multi-spot Monitoring System Using PTZ Camera and Wireless Sensor Network (PTZ 카메라와 무선 센서 네트워크를 이용한 효율적인 다중 지역 절전형 모니터링 시스템)

  • Seo, Dong-kyu;Son, Cheol-su;Yang, Su-yeong;Cho, Byung-lok;Kim, Won-jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.581-584
    • /
    • 2009
  • Recently, the cameras which used for observation are installed in children protection area and local crime prevention area in order to protect life and property and by its work being recognized and are installed more. Normal cameras have cost problem to observe multiple area and detail, because they can observe only one place. PTZ camera can observe multiple area by moving focus by schedule or remote control, but it can't automatically move the focus of it to the place where event occurred, because it can't recognize the place. In this study, we can monitor multiple area effectively, by installing a wireless sensor node equipped with temperature, lighting, gas and human detection sensor to each area, to monitor many place low-price and actively and to move the focus of PTZ camera to preset position, and send recorded video to the user, when the various sensor data received from wireless sensors in observation area are to be determined abnormal by analyzing. In addition, at night we can record a scene using infrared, but to reduce power consumption of lighting system which are installed to improve resolution, it supplies power to the lighting system when event occurred. So we were able to implement low power green monitoring system.

  • PDF

Development of Android-Based Photogrammetric Unmanned Aerial Vehicle System (안드로이드 기반 무인항공 사진측량 시스템 개발)

  • Park, Jinwoo;Shin, Dongyoon;Choi, Chuluong;Jeong, Hohyun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.215-226
    • /
    • 2015
  • Normally, aero photography using UAV uses about 430 MHz bandwidth radio frequency (RF) modem and navigates and remotely controls through the connection between UAV and ground control system. When using the exhausting method, it has communication range of 1-2 km with frequent cross line and since wireless communication sends information using radio wave as a carrier, it has 10 mW of signal strength limitation which gave restraints on life my distance communication. The purpose of research is to use communication technologies such as long-term evolution (LTE) of smart camera, Bluetooth, Wi-Fi and other communication modules and cameras that can transfer data to design and develop automatic shooting system that acquires images to UAV at the necessary locations. We conclude that the android based UAV filming and communication module system can not only film images with just one smart camera but also connects UAV system and ground control system together and also able to obtain real-time 3D location information and 3D position information using UAV system, GPS, a gyroscope, an accelerometer, and magnetic measuring sensor which will allow us to use real-time position of the UAV and correction work through aerial triangulation.

An Advanced User-friendly Wireless Smart System for Vehicle Safety Monitoring and Accident Prevention (차량 안전 모니터링 및 사고 예방을 위한 친사용자 환경의 첨단 무선 스마트 시스템)

  • Oh, Se-Bin;Chung, Yeon-Ho;Kim, Jong-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1898-1905
    • /
    • 2012
  • This paper presents an On-board Smart Device (OSD) for moving vehicle, based on a smooth integration of Android-based devices and a Micro-control Unit (MCU). The MCU is used for the acquisition and transmission of various vehicle-borne data. The OSD has threefold functions: Record, Report and Alarm. Based on these RRA functions, the OSD is basically a safety and convenience oriented smart device, where it facilitates alert services such as accident report and rescue as well as alarm for the status of vehicle. In addition, voice activated interface is developed for the convenience of users. Vehicle data can also be uploaded to a remote server for further access and data manipulation. Therefore, unlike conventional blackboxes, the developed OSD lends itself to a user-friendly smart device for vehicle safety: It basically stores monitoring images in driving plus vehicle data collection. Also, it reports on accident and enables subsequent rescue operation. The developed OSD can thus be considered an essential safety smart device equipped with comprehensive wireless data service, image transfer and voice activated interface.

Protocol Design for Fire Receiver­based Fire Detection Robots (화재수신기 기반의 화재감시로봇을 위한 프로토콜 설계)

  • Lim, Jong-Cheon;Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.452-459
    • /
    • 2018
  • Conventional fire fighting robots are controlled by a remote control to monitor the fire scene or to suppress the fire. However, this method has a problem that it takes a long time to prepare robot and input it to fire place in the golden time after the fire, so that it can not sufficiently serve as a fire fighting robot. Using the autonomous driving fire monitoring robot, when a fire signal is generated, in conjunction with a fire receiver a moving robot takes a video of the fire scene and delivers the image to the fire department, so that the fire fighter can decide if it is real fire or not. Thereby it is possible to prevent a sudden spread of an accident by providing a quick judgment opportunity and at the same time suppressing the fire early. In this paper, we propose an architecture of the autonomous mobile fire monitoring robot and the communication protocol required for the robot to work with the fire receiver. A communication protocol is designed to control multiple fire monitoring robots in real time, and a communication with a fire receiver is designed as a hierarchical network to serve as an interface of an Ethernet network using wireless Wi-Fi. The fire monitoring robot and the wireless communication of the fire receiving period are implemented and the effectiveness of the operation is confirmed through the field test.

Smartphone Real Time Streaming Service using Parallel TCP Transmission (병렬 TCP 통신을 이용한 스마트폰 실시간 스트리밍 서비스)

  • Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.937-941
    • /
    • 2016
  • This paper proposed an efficient multiple TCP mechanism using Android smartphones for remote control video Wi-Fi stream transmission via network communications in real time. The wireless video stream transmission mechanism can be applied in various area such as real time server stream transmissions, movable drones, disaster robotics and real time security monitoring systems. Moreover, we urgently need to transmit data in timely fashion such as medical emergency, security surveillance and disaster prevention. Our parallel TCP transmission system can play an important role in several area such as real time server stream transmissions, movable drones, disaster robotics and real time security monitoring systems as mentioned in the previous sentence. Therefore, we designed and implemented a parallel TCP transmission (parallel stream) for an efficient real time video streaming services. In conclusion, we evaluated proposed mechanism using parallel TCP transmission under various environments with performance analysis.

Development of a dynamic sensing system for civil revolving structures and its field tests in a large revolving auditorium

  • Luo, Yaozhi;Yang, Pengcheng;Shen, Yanbin;Yu, Feng;Zhong, Zhouneng;Hong, Jiangbo
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.993-1014
    • /
    • 2014
  • In civil engineering, revolving structures (RS) are a unique structural form applied in innovative architecture design. Such structures are able to revolve around themselves or along a certain track. However, few studies are dedicated to safety design or health monitoring of RS. In this paper, a wireless dynamic sensing system is developed for RS, and field tests toward a large revolving auditorium are conducted accordingly. At first, a wheel-rail problem is proposed: The internal force redistributes in RS, which is due to wheel-rail irregularity. Then the development of the sensing system for RS is presented. It includes system architecture, network organization, vibrating wire sensor (VWS) nodes and online remote control. To keep the sensor network identifiable during revolving, the addresses of sensor nodes are reassigned dynamically when RS position changes. At last, the system is mounted on a huge outdoor revolving auditorium. Considering the influence of the proposed problem, the RS of the auditorium has been designed conservatively. Two field tests are conducted via the sensing system. In the first test, 2000 people are invited to act as the live load. During the revolving process, data is collected from RS in three different load cases. The other test is the online monitoring for the auditorium during the official performances. In the end, the field-testing result verifies the existence of the wheel-rail problem. The result also indicates the dynamic sensing system is applicable and durable even while RS is rotating.

Design of Multi-node Real-time Diagnostic and Management System Using Zigbee Sensor Network (Zigbee 센서 네트워크를 활용한 다중노드 실시간 진단 및 관리시스템 설계)

  • Kang, Moonsik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.152-161
    • /
    • 2014
  • In this paper, a multi-node real-time diagnostic and management system based on zigbee sensor network is proposed, which is to monitor and diagnose multiple nodes as well as to control the data generated from the various multiple sensors collectively. The proposed system is designed to transmit the collected wireless and wired data to the server for monitoring and controling efficiently the condition for multi-nodes by taking the corresponding actions according to the analysis. The system is implemented to make it possible to manage the sensor data by classifying them, of which data are issued from the clustered sources with a number of the remote sensors. In order to evaluate the performance of the proposed system, we measure and analyze both the transmission delay time according to the distance and the data loss rate issued from multiple sensors. The results shows that the proposed system has a good performance.

Development of a Smart Grid Monitoring System with Anti-Islanding Function for Electric Vehicle Charging (안티아일랜딩 기능을 적용한 전기자동차 충전계통 연계 스마트그리드 모니터링 시스템 개발)

  • Ro, Sunny;Shin, Bum-Sik;Lee, Kyung-Jung;Ki, Young-Hun;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • In this paper, we present a smart grid monitoring system connected with electric vehicle charging system using anti-islanding method. Electric vehicles can be charged through remote control of smart grid monitoring system and the charging process may be more stable and more efficient by wireless communication between the Local Area Module and End Modules. It is illustrated by some experiments that electric vehicle charging process may not be interrupted without any serious fault even though the islanding phenomena occurred in the grid if the presented monitoring system was applied to the smart grid system.

Low Latency Uplink Transmission Scheme in Mobile Communication Networks (이동통신망에서 저지연 상향링크 전송 기법)

  • Bae, Duck-Hyun;Lee, Hyun-Suk;Lee, Jang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.77-87
    • /
    • 2017
  • Even though current LTE/LTE-A mobile networks provide enough high data rate and low latency to support conventional wireless services, to support ultra-low delay services, such as virtual reality and remote control, in the next generation mobile communication network, it is required to provide very low delay about several ms. However, in the uplink transmission of the LTE/LTE-A system, the process of scheduling grant is required to obtain uplink resources for uplink transmission from the eNB. The process of granting uplink resources from eNB brings additional fixed latency, which is one of the critical obstacles to achieve low delay in uplink transmissions. Thus, in this paper, we propose a novel uplink transmission scheme called Cut-in uplink transmission, to reduce uplink latency. We provide the performance of the proposed uplink transmission scheme through simulations and show the proposed uplink transmission scheme provides lower uplink transmission delay than conventional uplink transmission scheme in LTE/LTE-A mobile networks.

Design of r-Sensor Protocol and Hardware Implementation for Intelligent Home Service (지능형 홈서비스를 위한r-Sensor프로토콜설계 및 하드웨어 구현)

  • Kwak, Tae-Kil;Lee, Bum-Sung;Jung, Jin-Wook;Jin, Kyo-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2113-2119
    • /
    • 2006
  • In this paper, we design the r-Sensor protocol for reliable data transmission in the Intelligent Home Service based on the wireless sensor network environment. The r-Sensor protocol improve the reliability of data transmission and node fairness using simple routing algorithm, congestion control, and loss recovery method that minimize the load of relay node. Reposed routing algorithm find out upstream and downstream nodes using the Network Management packet. Meanwhile, loss recovery algorithm uses the Aggregated-Nack. To apply supposed algorithm, the IHS-AMR(Intelligent Home Service - Automatic Meter Reader) and sensor node are designed and implemented in hardware. The IHS-AMR provides remote metering service and also offers home safety service by internetworking with sensor network, mobile phone network and internet.