• Title/Summary/Keyword: winkler-pasternak foundation

Search Result 174, Processing Time 0.023 seconds

Mechanical and thermal stability investigation of functionally graded plates resting on visco-Pasternak foundation

  • Samira Hassiba Tagrara;Mohamed Mehdi hamri;Mahmoud Mohamed Selim Saleh;Mofareh Hassan Ghazwani;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.839-856
    • /
    • 2023
  • This work presents a simple four-unknown refined integral plate theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on Visco-Pasternak foundations. The proposed refined high order shear deformation theory has a new displacement field which includes indeterminate integral variables and contains only four unknowns in which any shear correction factor not used, with even less than the conventional theory of first shear strain (FSDT). Governing equations are deduced from the principle of minimum total potential energy and a Navier type analytical solution is adopted for simply supported FG plates. The Visco-Pasternak foundations is considered by adding the impact of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The accuracy of the present model is demonstrated by comparing the computed results with those available in the literature. Some numerical results are presented to show the impact of material index, elastic foundation type, and damping coefficient of the foundation, on the mechanical and thermal buckling behaviors of FG plates.

Static and Free Vibration Analysis of FGM Plates on Pasternak Elastic Foundation (Pasternak 탄성지반위에 놓인 점진기능재료 판의 정적 및 자유진동 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.529-538
    • /
    • 2016
  • The simplified plate theory is presented for static and free vibration analysis of power-law(P) and sigmoid(S) Functionally Graded Materials(FGM) plates. This theory considers the parabolic distribution of the transverse shear stress, and satisfies the condition that requires the transverse shear stress to be zero on the upper and lower surfaces of the plate, without the shear correction factor. The simplified plate theory uses only four unknown variables and shares strong similarities with classical plate theory(CPT) in many aspects such as stress-resultant expressions, equation of motion and boundary conditions. The material properties of the plate are assumed to vary according to the power-law and sigmoid distributions of the volume fractions of the constituents. The Hamilton's principle is used to derive the equations of motion and Winkler-Pasternak elastic foundation model is employed. The results of static and dynamic responses for a simply supported FGM plate are calculated and a comparative analysis is carried out. The results of the comparative analysis with the solutions of references show relevant and accurate results for static and free vibration problems of FGM plates. Analytical solutions for the static and free vibration problems are presented so as to reveal the effects of the power law index, elastic foundation parameter, and side-to-thickness ratio.

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium

  • Akbas, Seref D.
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1125-1143
    • /
    • 2016
  • Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory

  • Benselama, Khadidja;El Meiche, Noureddine;Bedia, El Abbas Adda;Tounsi, Abdelwahed
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium

  • Chegenizadeh, Amin;Ghadimi, Behzad;Nikraz, Hamid;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.727-741
    • /
    • 2014
  • The functionally graded beam (FGB) is investigated in this study on both dynamic and static loading in case of resting on a soil medium rather than on the usual Winkler-Pasternak elastic foundation. The powerful ABAQUS software was used to model the problem applying finite element method. In the present study, two different soil models are taken into account. In the first model, the soil is assumed to be an elastic plane stress medium. In the second soil model, the Drucker-Prager yield criterion, which is one of the most well-known elastic-perfectly plastic constitutive models, is used for modelling the soil medium. The results are shown to evaluate the effects of the different soil models, stiffness values of the elastic soil medium on the normal and shear stress and free vibration properties. A comparison was made to those from the existing literature. Numerical results show that considering real soil as a continuum space affects the results of the bending and the modal properties significantly.

Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation

  • Chaabane, Lynda Amel;Bourada, Fouad;Sekkal, Mohamed;Zerouati, Sara;Zaoui, Fatima Zohra;Tounsi, Abdeldjebbar;Derras, Abdelhak;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.185-196
    • /
    • 2019
  • In this investigation, study of the static and dynamic behaviors of functionally graded beams (FGB) is presented using a hyperbolic shear deformation theory (HySDT). The simply supported FG-beam is resting on the elastic foundation (Winkler-Pasternak types). The properties of the FG-beam vary according to exponential (E-FGB) and power-law (P-FGB) distributions. The governing equations are determined via Hamilton's principle and solved by using Navier's method. To show the accuracy of this model (HySDT), the current results are compared with those available in the literature. Also, various numerical results are discussed to show the influence of the variation of the volume fraction of the materials, the power index, the slenderness ratio and the effect of Winkler spring constant on the fundamental frequency, center deflection, normal and shear stress of FG-beam.

Visco-elastic foundation effect on buckling response of exponentially graded sandwich plates under various boundary conditions

  • Mimoun Bennedjadi;Salem Mohammed Aldosari;Abdelbaki Chikh;Abdelhakim Kaci;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdeldjebbar Tounsi;Kouider Halim Benrahou;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In the present work, a simple and refined shear deformation theory is used to analyze the effect of visco-elastic foundation on the buckling response of exponentially-gradient sandwich plates under various boundary conditions. The proposed theory includes indeterminate integral variables kinematic with only four generalized parameters, in which no shear correction factor is used. The visco-Pasternak's foundation is taken into account by adding the influence of damping to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's foundation modulus. The four governing equations for FGM sandwich plates are derived by employing principle of virtual work. To solve the buckling problem, Galerkin's approach is utilized for FGM sandwich plates for various boundary conditions. The analytical solutions for critical buckling loads of several types of powerly graded sandwich plates resting on visco-Pasternak foundations under various boundary conditions are presented. Some numerical results are presented to indicate the effects of inhomogeneity parameter, elastic foundation type, and damping coefficient of the foundation, on the critical buckling loads.

Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation

  • Bendenia, Noureddine;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Bedia, E.A. Adda;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.213-226
    • /
    • 2020
  • The present study covenants with the static and free vibration behavior of nanocomposite sandwich plates reinforced by carbon nanotubes resting on Pasternak elastic foundation. Uniformly distributed (UD-CNT) and functionally graded (FG-CNT) distributions of aligned carbon nanotube are considered for two types of sandwich plates such as, the face sheet reinforced and homogeneous core and the homogeneous face sheet and reinforced core. Based on the first shear deformation theory (FSDT), the Hamilton's principle is employed to derive the mathematical models. The obtained solutions are numerically validated by comparison with some available cases in the literature. The elastic foundation model is assumed as one parameter Winkler - Pasternak foundation. A parametric study is conducted to study the effects of aspect ratios, foundation parameters, carbon nanotube volume fraction, types of reinforcement, core-to-face sheet thickness ratio and types of loads acting on the bending and free vibration analyses. It is explicitly shown that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.

A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation (탄성지반위에 놓인 S형상 점진기능재료(FGM)판의 동적 불안정성에 관한 연구)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • This article presents the dynamic instability response of sigmoid functionally graded material plates on elastic foundation using the higher-order shear deformation theory. The higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. The results of dynamic instability analysis of sigmoid functionally graded material plate are presented using the Navier's procedure to illustrate the effect of elastic foundation parameter on dynamic response. The relations between Winkler and Pasternak elastic foundation parameter are discussed by numerical results. Also, the effects of static load factor, power-law index and side-to-thickness ratio on dynamic instability analysis are investigated and discussed. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for the dynamic instability study of S-FGM plates.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.