Browse > Article
http://dx.doi.org/10.12989/sss.2016.18.6.1125

Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
Publication Information
Smart Structures and Systems / v.18, no.6, 2016 , pp. 1125-1143 More about this Journal
Abstract
Forced vibration analysis of a simple supported viscoelastic nanobeam is studied based on modified couple stress theory (MCST). The nanobeam is excited by a transverse triangular force impulse modulated by a harmonic motion. The elastic medium is considered as Winkler-Pasternak elastic foundation.The damping effect is considered by using the Kelvin-Voigt viscoelastic model. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Timoshenko beam theory by using finite element method. The effects of the transverse shear deformation and rotary inertia are included according to the Timoshenko beam theory. The obtained system of differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. Numerical results are presented to investigate the influences the material length scale parameter, the parameter of the elastic medium and aspect ratio on the dynamic response of the nanobeam. Also, the difference between the classical beam theory (CBT) and modified couple stress theory is investigated for forced vibration responses of nanobeams.
Keywords
nanobeam; modified couple stress theory; forced vibration; winkler-pasternak foundation;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Chakraborty, A., Mahapatra, D.R. and Gopalakrishnan, S. (2002), "Finite element analysis of free vibration and wave propagation in asymmetric composite beams with structural discontinuities", Compos. Struct., 55(1), 23-36   DOI
2 Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R., (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442.   DOI
3 Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112.   DOI
4 Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332,331-338.   DOI
5 Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39.   DOI
6 Ebrahimi, F. and Shafiei, N. (2016), "Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams", Smart Struct. Syst., 17(5), 837-857.   DOI
7 Eringen, AC (1972), Nonlocal polar elastic continua. Int. J. Eng. Sci., 10(1),1-16.   DOI
8 Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear size-dependent dynamics of microarches with modal interactions", J. Vib. Control, Doi: 10.1177/1077546314565439.   DOI
9 Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.   DOI
10 Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41, 1825-1857.   DOI
11 Mohammadimehr, M., Mohandes, M. and Moradi, M. (2014), "Size dependent effect on the buckling and vibration analysis of double-bonded nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on modified couple stress theory", J. Vib. Control., Doi: 10.1177/1077546314544513.   DOI
12 Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11,415-448.   DOI
13 Mindlin, R.D. (1963), Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7.   DOI
14 Movahedian, B. (2012), "Dynamic stiffness matrix method for axially moving micro-beam", Iteraction Multis. Mech., 5(4), 385-397.   DOI
15 Newmark, N.M. (1959), "A method of computation for structural dynamics", Eng. Mech. Div. - ASCE, 85, 67-94.
16 Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16,2355-2359.   DOI
17 Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chemistry, 76, 292-297.   DOI
18 Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12, 1163-1170.   DOI
19 Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825.   DOI
20 Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE 86,1611-1626.   DOI
21 Shafiei, N., Mousavi, A. and Ghadiri, M. (2016), "Vibration behavior of a rotating nonuniform FG microbeam based on the modified couple stress theory and GDQEM", Compos. Struct., 149, 157-169.   DOI
22 Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of size-dependent microbeams", Physica E: Low-Dimensional Systems and Nanostructures, 43(7), 1387-1393.   DOI
23 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.   DOI
24 Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1985-1994.   DOI
25 Kahrobaiyan, M.H., Asghari, M., Hoore, M. and Ahmadian, M.T. (2011), "Nonlinear size-dependent forced vibrational behavior of microbeams based on a non-classical continuum theory", J. Vib. Control, Doi:10.1177/1077546311414600.   DOI
26 Kocatürk, T. and Akbas, S.D., (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46, 417-431.   DOI
27 Kong, S.L., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46, 427-437.   DOI
28 Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater.Res., 694-697, 221-224.   DOI
29 Kural, S. and Erdogan, O. (2015), "Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation", J. Vib. Control, Doi: 10.1177/1077546315589666.   DOI
30 Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508.   DOI
31 Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11,385-414.   DOI
32 Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48, 1721-1732.   DOI
33 Simsek, M., Kocaturk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95,740-747.   DOI
34 Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56, 3379-3391.   DOI
35 Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58.   DOI
36 Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30.   DOI
37 Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, Paris Production Incorporated and Del Research Corporation.
38 Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A., Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of doublewalled carbon nanotubes", Adv. Nano Res., 1(1), 1-11.   DOI
39 Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48, 2044-2053.   DOI
40 Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26, 675-684.   DOI
41 Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10.   DOI
42 Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621630.
43 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743.   DOI
44 Zamanian, M., Rezaei, H., Hadilu, M. and Hosseini, S.A.A. (2015), "A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeams", Smart Struct. Syst., 16(5), 891-918.   DOI
45 Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693710.
46 Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors and Actuators, 35, 31-59.
47 Aissani, K., Bouiadjra, M.C, Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-764.   DOI
48 Afkhami, Z. and Farid, M. (2014), "Thermo-mechanical vibration and instability of carbon nanocones conveying fluid using nonlocal Timoshenko beam model", J. Vib. Control, Doi: 10.1177/1077546314534715.   DOI
49 Ahouel, M., Houari, M.S.A.E.A., Bedia, A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981.   DOI
50 Akbas, S.D. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599.   DOI
51 Akgoz, B. and Civalek, O. (2015a), "A novel microstructuredependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20.   DOI
52 Akgoz, B. and Civalek, O. (2012a), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
53 Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205.   DOI
54 Akgoz, B. and Civalek, O. (2014a), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104.   DOI
55 Akgoz, B. and Civalek, O. (2014b), "Longitudinal vibration analysis for microbars based on strain gradient elasticity theory", J. Vib.Control, 20(4), 606-616.   DOI
56 Akgoz, B. and Civalek, O. (2014c), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225.   DOI
57 Akgoz, B. and Civalek, O. (2015b), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301.   DOI
58 Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12.   DOI
59 Ansari, R, Gholami, R. and Darabi, M.A. (2012a), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
60 Ansari, R., Gholami, R and Rouhi, H (2012b), "Various gradient elasticity theories in predicting vibrational response of single-walled carbon nanotubes with arbitrary boundary conditions", J. Vib. Control, 19(5), 708-719   DOI
61 Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal theory", Struct. Eng. Mech., 55(2), 281-298.   DOI
62 Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062.   DOI
63 Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Design, 31, 2324-3249.   DOI
64 Bahraini, M.S., Eghtesad, M., Farid, M. and Ghavanloo, E. (2014), "Analysis of an electrically actuated fractional model of viscoelastic microbeams", Struct. Eng. Mech., 55(4), 743-763.   DOI
65 Bayat, M.I., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831.   DOI
66 Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag doublewalled carbon nanotubes", Compos. Part B, 57, 2124.
67 Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A., Benzair, A. (2015), "Nonlinear vibration properties of a zigzag singlewalled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 2937.
68 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zerothorder Shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249.   DOI
69 Broek, D. (1986), Elementary engineering fracture mechanics, Martinus Nijhoff Publishers, Dordrecht.