Browse > Article
http://dx.doi.org/10.12989/sem.2015.55.1.047

Buckling analysis in hybrid cross-ply composite laminates on elastic foundation using the two variable refined plate theory  

Benselama, Khadidja (Laboratoire des Materiaux et Hydrologie, Universite Djillali Liabes)
El Meiche, Noureddine (Laboratoire des Materiaux et Hydrologie, Universite Djillali Liabes)
Bedia, El Abbas Adda (Laboratoire des Materiaux et Hydrologie, Universite Djillali Liabes)
Tounsi, Abdelwahed (Laboratoire des Materiaux et Hydrologie, Universite Djillali Liabes)
Publication Information
Structural Engineering and Mechanics / v.55, no.1, 2015 , pp. 47-64 More about this Journal
Abstract
This paper presents the effect of hybridization material on variation of critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the principle of virtual displacement; the formulation is based on a new trigonometric shape function of displacement taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.
Keywords
buckling; hybrid; cross-ply laminates; winkler and pasternak; elastic foundation; two variables plate theory;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Aiello, M.A. and Ombres, L. (1999), "Buckling and vibration of unsymmetric laminated resting on elastic foundation under in-plane and shear forces", Compos. Struct., 44, 31-41.   DOI   ScienceOn
2 Akavci, S.S. (2007), "Buckling and Free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26(18), 1907-1919.   DOI   ScienceOn
3 Bao, G., Jiang, W. and Roberts, J.C. (1997), "Analytic and finite element solutions for bending and buckling of orthotropic rectangular plates", Int. J. Solid. Struct., 34, 1797-822.   DOI
4 Mechab, B., Mechab, I. and Benaissa, S. (2012), "Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermomechanicalloading", Compos. Part B, 43, 1453-1458.   DOI
5 Das, Y. (1963), "Buckling of rectangular orthotropic plates", Appl. Sci. Res., Sec. A, 11(1), 97-103.   DOI
6 El meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247.   DOI   ScienceOn
7 El-Zafrany, A., Fadhil, S. and Al-Hosani, K. (1995), "A new fundamental solution for boundary element analysis of thick plates on winkler foundation", Int. J. Numer. Meth. Eng., 38, 887-903.   DOI
8 Felix, D.H., Bambill, D.V. and Rossit, C.A. (2011), "A note on buckling and vibration of clamped orthotropic plates under in-plane loads", Struct. Eng. Mech., 39(1), 115-123.   DOI
9 Gupta, U.S., Ansari, A.H. and Sharma, L. (2006), "Buckling and vibration of polar orthotropic circular plate resting Winkler foundation", J. Sound. Vib., 297, 457-76.   DOI
10 Groves, S.E., Harris, C.E., Highsmith, A.L., Allen, D.H. and Norvell, R.G. (1987), "An experimental and analytical treatment of matrix cracking in cross-ply laminates", Exper. Mech., 27, 73-79.   DOI
11 Harik, I. and Ekambaram, R. (1988), "Elastic stability of orthotropic plates", Thin Wall Struct., 6(5), 405-16.   DOI
12 Hwang, I. and Lee, J. (2006), "Buckling of orthotropic plates under various inplane loads", KSCE J. Civil Eng., 10(5), 349-56.   DOI
13 Joffe, R., Krasnikovs, A. and Varna, J. (2001), "COD-based simulation of transverse cracking and stiffness reduction in [S/90 n] s laminates", Compos. Sci. Tech., 61, 637-656.   DOI
14 Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plate using the two variables refined plate theory", Thin Wall. Struct., 47, 455-462.   DOI   ScienceOn
15 Lee, H.P. (1998), "Dynamic response of a Timoshenko beam on a Winkler foundation subjected to a moving mass", Appl. Acoust., 55(3), 203-15.   DOI
16 Malekzadeh, P. and Karami, G. (2004), "Vibration of non-uniform thick plates on elastic foundation by differential quadrature method", Eng. Struct., 26, 1473-82.   DOI   ScienceOn
17 Noor, A.K. (1975), "Stability of multilayered composite plates", Fibre Sci. Technol., 8(2), 81-89.   DOI
18 Omurtag, M.H. and Kadioglu, F. (1998), "Free vibration analysis of orthotropic plates resting on Pasternak foundation by mixed finite element formulation", Comput. Struct., 67, 253-265.   DOI
19 Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite plates using a Higher-order Shear Deformation Theory", Int. J. Numer. Meth. Eng., 21, 2201-2219.   DOI
20 Reddy, J.N. and Khdeir, A.A. (1989), "Buckling and vibration of laminated composite plates using various plate theories", AIAA J., 27(12), 1808-1817.   DOI
21 Reddy, J.N. (1981), Energy and Variational Methods in Applied Mechanics, John Willy and Sons, New York.
22 Sadowski, T., Marsavina, L., Peride, N. and Cracium, E.M. (2009a), "Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods", Comput, Mater. Sci., 46(3), 687-693.   DOI
23 Sadowski, T., Marsavina, L., Cracium, E.M. and Knec, M. (2012b), "Modelling and experimental study of parallel cracks propagation in an orthotropic elastic material", Comput, Mater. Sci., 52(1), 231-235.   DOI
24 Saha, K.N., Kart, R.C. and Dattal, P.K. (1997), "Dynamic stability of a rectangular plate on nonhomogeneous Winkler foundation", Comput. Struct., 63(6), 1213-1222.   DOI
25 Setoodeh, A.R. and Karami, G. (2004), "Static, free vibration and buckling analysis of anisotropic thick laminated plates on distributed and point elastic supports using a 3-D layer wise FEM", Eng. Struct., 26, 211-220.   DOI
26 Shen, H.S., Zheng, J.J. and Huang, X.L. (2003), "Dynamic response of shear deformable laminates plates under thermomechanical loading and resting on elastic foundation", Compos. Struct., 60, 57-66.   DOI
27 Singhatanadgid, P. and Sukajit, P. (2011), "Experimental determination of the buckling load of rectangular plates using vibration correlation technique", Struct. Eng. Mech., 37(3), 331-349.   DOI
28 Shimpi, R. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(22-23), 6783-99.   DOI
29 Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., 46(2), 269-294.   DOI
30 Thielemann, W. (1950), "Contributions to the problem of the buckling of orthotropic plates", NACA Technical Memorandum, 1263.
31 Utku, M., Citipitioglu, E. and Inceleme, I. (2000), "Circular plates on elastic foundations modelled with annular plates", Comput. Struct., 78, 365-374.   DOI
32 Xiang, Y., Kitipornchai, S. and Liew, K.M. (1996), "Buckling and vibration of thick laminates on Pasternak foundation", J. Eng. Mech., ASCE, 122(1), 54-63.   DOI