• Title/Summary/Keyword: whole cell biocatalyst

Search Result 38, Processing Time 0.023 seconds

Molecular Identification of Lipase LipA from Pseudomonas protegens Pf-5 and Characterization of Two Whole-Cell Biocatalysts Pf-5 and Top10lipA

  • Zha, Daiming;Xu, Li;Zhang, Houjin;Yan, Yunjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.619-628
    • /
    • 2014
  • To identify lipase LipA (PFL_0617) from Pseudomonas protegens Pf-5, a lipA deletion mutant (Pf0617) and a complementary strain (Pf0617lipA) were constructed, and their effects on the lipase production were examined. Pf0617 remarkably decreased its whole-cell lipase activity, whereas Pf0617lipA made its whole-cell lipase activity not only restore to wild-type level but also get a further increment. However, the deletion and overexpression of lipA did not affect the extracellular lipase activity. In addition, the unbroken whole cells of these strains were able to catalyze the hydrolysis of membrane-permeable p-nitrophenyl esters, but could not hydrolyze the membrane-impermeable olive oil. These results confirmed that LipA was an intracellular lipase and Pf-5 could also be used as a natural whole-cell biocatalyst. To evaluate the potential of Pf-5 as a whole-cell biocatalyst and separately characterize the whole-cell LipA, the properties of the whole-cell lipases from Pf-5 and Top10lipA were characterized. The results demonstrated that both Pf-5 and Top10lipA exhibited high tolerance to alkaline condition, high temperature, heavy metal ions, surfactants, and organic solvents. Taken together, lipA can realize functional expression in E. coli Top10, and Pf-5 and Top10lipA as whole-cell biocatalysts may have enormous potential in applications.

Surface Display of Heme- and Diflavin-Containing Cytochrome P450 BM3 in Escherichia coli: A Whole-Cell Biocatalyst for Oxidation

  • Yim, Sung-Kun;Kim, Dong-Hyun;Jung, Heung-Chae;Pan, Jae-Gu;Kang, Hyung-Sik;Ahn, Tae-Ho;Yun, Chul-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.712-717
    • /
    • 2010
  • Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.

Cofactor Regeneration Using Permeabilized Escherichia coli Expressing NAD(P)+-Dependent Glycerol-3-Phosphate Dehydrogenase

  • Rho, Ho Sik;Choi, Kyungoh
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1346-1351
    • /
    • 2018
  • Oxidoreductases are effective biocatalysts, but their practical use is limited by the need for large quantities of NAD(P)H. In this study, a whole-cell biocatalyst for NAD(P)H cofactor regeneration was developed using the economical substrate glycerol. This cofactor regeneration system employs permeabilized Escherichia coli cells in which the glpD and gldA genes were deleted and the gpsA gene, which encodes $NAD(P)^+-dependent$ glycerol-3-phosphate dehydrogenase, was overexpressed. These manipulations were applied to block a side reaction (i.e., the conversion of glycerol to dihydroxyacetone) and to switch the glpD-encoding enzyme reaction to a gpsA-encoding enzyme reaction that generates both NADH and NADPH. We demonstrated the performance of the cofactor regeneration system using a lactate dehydrogenase reaction as a coupling reaction model. The developed biocatalyst involves an economical substrate, bifunctional regeneration of NAD(P)H, and simple reaction conditions as well as a stable environment for enzymes, and is thus applicable to a variety of oxidoreductase reactions requiring NAD(P)H regeneration.

Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst

  • Lee, Byeonghun;Lee, Saebom;Kim, Hyeonsoo;Jeong, Kijun;Park, Jinbyung;Park, Kyungmoon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.452-458
    • /
    • 2015
  • The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid). The effects of pH, reaction temperature, and non-ionic detergent on recombinant C. glutamiucm whole cell bioconversion were examined. The determined optimal conditions for production of 12-ketooleic acid are pH 8.0, 35℃, and 0.05 g/l Tween80. Under these conditions, recombinant C. glutamicum produces 3.3 mM 12-ketooleic acid, with a 72% (mol/mol) maximum conversion yield, and 1.1 g/l/h volumetric productivity in 2 h; and 3.9 mM 12-ketooleic acid, with a 74% (mol/mol) maximum conversion yield, and 0.69 g/l/h maximum volumetric productivity in 4 h of fermentation. This study constitutes the first report of significant production of 12-ketooleic acid using a recombinant Corynebacterium glutamicum-based biocatalyst.

Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application

  • Lee, Seung Hwan;Lee, Sang Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.244-247
    • /
    • 2020
  • We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.

Production of Liquiritigenin with Cell-based Biotransformation and Its Anti-Aging Activity (균사체 생물전환기술을 이용한 리퀘리티게닌 생산과 항노화 활성)

  • Hwang, Hye Jin;Jeong, Sang Chul;Park, Jong Pil
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • In this study, an efficient whole cell-based biotransformation for the production of liquiritigenin was developed using Laetiporus sulphureus CS0218 as biocatalyst and aqueous extracts of Glycyrrhiza uralensis as co-substrate, respectively. In order to determine the efficacy of this method, the optimal bioconversion conditions including mycelial growth, three important enzyme activities (${\beta}$-glucosidase, ${\alpha}$-rhamnosidase and ${\beta}$-xylosidase), and apparent viscosity of culture broth were monitored. After optimization, aqueous extracts of G. uralensis were added to the culture medium to directly produce algycone liquiritigenin. By applying this strategy, 67.5% of liquiritin was converted to liquiritigenin at pH 3.0 after 9 days of incubation and finally liquiritigenin was purified from the reaction mixture. And then, their biological activities including anti-oxidant and superoxide dismutase were observed. In fact, purified liquiritigenin was capable of bi-directional functions (i.e., either up-regulation or down-regulation of SIRT1 which is associated with aging). The results indicate that this strategy would be beneficial to produce biologically active liquiritigenin and could be used in pharmaceutical, cosmetic and food applications.

Synthesis of L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) by Thermostable L-Threonine Aldolase Expressed in Corynebacterium glutamicum R (Corynebacterium glutamicum에서 발현된 L-Threonine Aldolase를 이용한 파킨슨병 치료제 L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS)의 합성)

  • Baik, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • In order to examine efficient L-threo-2,3-Dihydroxyphenylserine (L-threo-DOPS) synthesis process using whole cell biocatalyst, a thermostable L-threonine aldolase (L-TA), which cloned from Streptomyces coelicolor A3(2) and improved for stability, was expressed in a Corynebacterium glutamicum R strain. The constructed Corynebacterium expression vector, pCG-H44(1) successfully expressed L-TA in C. glutamicum R strain, but showed very low expression level. In order to improve the expression level, the expression vector named pCG-H44(2) was reconstructed by eliminating 1 nucleotide between SD sequence and start codon of L-TA. The pCG-H44(2) vector plasmid was able to overexpress L-TA approximately 3.2 times higher than pCG-H44(1) in C. glutamicum R strain (CGH-2). When the whole cell of CGH-2 was examined in a repeated batch system, L-threo-DOPS was successfully synthesized with a yield of 4.0 mg/ml and maintain synthesis rate constantly after 30 repeated batch reactions for 130 h.

Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase

  • Ji Sun Park;Young-Woo Kim;Hyungdong Kim;Sun-Ki Kim;Kyeongsoon Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1506-1512
    • /
    • 2023
  • Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.