Browse > Article
http://dx.doi.org/10.4014/jmb.1501.01001

Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst  

Lee, Byeonghun (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Saebom (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Hyeonsoo (Department of Chemical and Biomolecular Engineering, Sogang University)
Jeong, Kijun (Department of Chemical and Biomolecular Engineering, KAIST)
Park, Jinbyung (Department of Food Science and Engineering, Ewha Woman's University)
Park, Kyungmoon (Department of Biological and Chemical Engineering, Hongik University)
Lee, Jinwon (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.4, 2015 , pp. 452-458 More about this Journal
Abstract
The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid). The effects of pH, reaction temperature, and non-ionic detergent on recombinant C. glutamiucm whole cell bioconversion were examined. The determined optimal conditions for production of 12-ketooleic acid are pH 8.0, 35℃, and 0.05 g/l Tween80. Under these conditions, recombinant C. glutamicum produces 3.3 mM 12-ketooleic acid, with a 72% (mol/mol) maximum conversion yield, and 1.1 g/l/h volumetric productivity in 2 h; and 3.9 mM 12-ketooleic acid, with a 74% (mol/mol) maximum conversion yield, and 0.69 g/l/h maximum volumetric productivity in 4 h of fermentation. This study constitutes the first report of significant production of 12-ketooleic acid using a recombinant Corynebacterium glutamicum-based biocatalyst.
Keywords
12-Ketooleic acid; ricinoleic acid; secondary alcohol dehydrogenase; whole cell bioconversion; Corynebacterium glutamicum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yim SS, An SJ, Kang MS, Lee JH, Jeong KJ. 2013. Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959-2969.   DOI   ScienceOn
2 Woldringh CL. 1970. Lysis of the cell membrane of Escherichia coli K12 by ionic detergents. Biochim. Biophys. Acta 224: 288-290.   DOI   ScienceOn
3 Xia Y, Larock RC. 2010. Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem. 12: 1893-1909.   DOI   ScienceOn
4 Richter N, Neumann M, Liese A, Wohlgemuth R, Weckbecker A, Eggert T, Hummel W. 2010. Characterization of a whole-cell catalyst co-expressing glycerol dehydrogenase and glucose dehydrogenase and its application in the synthesis of L-glyceraldehyde. Biotechnol. Bioeng. 106: 541-552.   DOI   ScienceOn
5 Sambrook J, Russell DW. 2001. Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Press, NY.
6 Sen A, Semiz A. 2007. Effects of metals and detergents on biotransformation and detoxification enzymes of leaping mullet (Liza saliens). Ecotoxicol. Environ. Saf. 68: 405-411.   DOI   ScienceOn
7 Song JW, Jeon EY, Song DH, Jang HY, Bornscheuer UT, Oh DK, Park JB. 2013. Multistep enzymatic synthesis of longchain α,ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew. Chem. Int. Ed. 52: 2534-2537.   DOI   ScienceOn
8 Tauch A, Kirchner O, Löffler B, Götker S, Pühler A, Kalinowski J. 2002. Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr. Microbiol. 45: 362-367.   DOI   ScienceOn
9 Willke TH, Vorlop KD. 2004. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66: 131-142.   DOI
10 Lee JH. 2014. Development and characterization of expression vectors for Corynebacterium glutamicum. J. Microbiol. Biotechnol. 24: 70-79.   DOI   ScienceOn
11 Hou CT. 1994. Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-1485 9). Appl. Environ. Microbiol. 60: 3760-3763.
12 Park JU, Jo JH, Kim YJ, Chung SS, Lee JH, Lee HH. 2008. Construction of heat-inducible expression vector of Corynebacterium glutamicum and C. ammoniagenes: fusion of lambda operator with promoters isolated from C. ammoniagenes. J. Microbiol. Biotechnol. 18: 639-647.
13 Jang HY, Jeon EY, Baek AH, Lee SM, Park JB. 2014. Production of ω-hydroxyundec-9-enoic acid and n-heptanoic acid from ricinoleic acid by recombinant Escherichia coli-based biocatalyst. Process Biochem. 49: 617-622.   DOI   ScienceOn
14 Hoffmann J, Altenbuchner J. 2014. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight. J. Appl. Microbiol. 117: 663-678.   DOI   ScienceOn
15 Hou CT. 1994. Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859). J. Am. Oil Chem. Soc. 71: 975-978.   DOI
16 Hou CT, Bagby MO. 1991. Production of a new compound, 7-10-dihydroxy-8-(E)-octadecenoic acid, by a Pseudomonas sp. PR3. J. Ind. Microbiol. 7: 123-130.   DOI
17 Joo YC, Seo ES, Kim YS, Kim KR, Park JB, Oh DK. 2012. Production of 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltaophilia. J. Biotechnol. 158: 17-23.   DOI   ScienceOn
18 Koritala S, Bagby MO. 1992. Microbial conversion of linoleic and linolenic acids to unsaturated hydroxy fatty acids. J. Am. Oil Chem. Soc. 67: 575-578.   DOI
19 Kuo TM, Nakamura LK, Lanser AC. 2002. Conversion of fatty acid by Bacillus sphaericus-like organisms. Curr. Microbiol. 45: 265-271.   DOI
20 Lanser AC, Nakamura LK. 1996. Identification of a Staphylococcus warneri species that converts oleic acid to 10-ketostearic acid. Curr. Microbiol. 32: 260-263.   DOI
21 Doo EH, Lee WH, Seo HS, Seo JH, Park JB. 2009. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J. Biotechnol. 142: 164-169.   DOI   ScienceOn