Browse > Article
http://dx.doi.org/10.4014/jmb.1312.12005

Molecular Identification of Lipase LipA from Pseudomonas protegens Pf-5 and Characterization of Two Whole-Cell Biocatalysts Pf-5 and Top10lipA  

Zha, Daiming (Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology)
Xu, Li (Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology)
Zhang, Houjin (Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology)
Yan, Yunjun (Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 619-628 More about this Journal
Abstract
To identify lipase LipA (PFL_0617) from Pseudomonas protegens Pf-5, a lipA deletion mutant (Pf0617) and a complementary strain (Pf0617lipA) were constructed, and their effects on the lipase production were examined. Pf0617 remarkably decreased its whole-cell lipase activity, whereas Pf0617lipA made its whole-cell lipase activity not only restore to wild-type level but also get a further increment. However, the deletion and overexpression of lipA did not affect the extracellular lipase activity. In addition, the unbroken whole cells of these strains were able to catalyze the hydrolysis of membrane-permeable p-nitrophenyl esters, but could not hydrolyze the membrane-impermeable olive oil. These results confirmed that LipA was an intracellular lipase and Pf-5 could also be used as a natural whole-cell biocatalyst. To evaluate the potential of Pf-5 as a whole-cell biocatalyst and separately characterize the whole-cell LipA, the properties of the whole-cell lipases from Pf-5 and Top10lipA were characterized. The results demonstrated that both Pf-5 and Top10lipA exhibited high tolerance to alkaline condition, high temperature, heavy metal ions, surfactants, and organic solvents. Taken together, lipA can realize functional expression in E. coli Top10, and Pf-5 and Top10lipA as whole-cell biocatalysts may have enormous potential in applications.
Keywords
Pseudomonas protegens; intracellular lipase; whole-cell biocatalyst; markerless deletion mutant; high tolerance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Angkawidjaja C, Kanaya S. 2006. Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cell Mol. Life Sci. 63: 2804-2817.   DOI
2 Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183.   DOI   ScienceOn
3 Busto E, Gotor-Fernandez V, Gotor V. 2006. Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase. Nat. Protoc. 1: 2061-2067.   DOI   ScienceOn
4 Chakraborty K, Paulraj R. 2009. Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421. J. Agric. Food Chem. 57: 3859-3866.   DOI   ScienceOn
5 Yang J, Zhang B, Yan Y. 2009. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl. Biochem. Biotechnol. 159: 355-365.   DOI   ScienceOn
6 Zhang A, Gao R, Diao N, Xie G, Gao G, Cao S. 2009. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. J. Mol. Catal. B Enzym. 56: 78-84.   DOI   ScienceOn
7 Zheng X, Chu X, Zhang W, Wu N, Fan Y. 2011. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: gene cloning and characterisation. Appl. Microbiol. Biotechnol. 90: 971-980.   DOI   ScienceOn
8 Panizza P, Syfantou N, Pastor FI, Rodriguez S, Diaz P. 2013. Acidic lipase Lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. J. Appl. Microbiol. 114: 722-732.   DOI   ScienceOn
9 Peng R, Lin J, Wei D. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl. Biochem. Biotechnol. 162: 733-743.   DOI
10 Quandt J, Hynes MF. 1993. Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127: 15-21.   DOI   ScienceOn
11 Rosenau F, Jaeger K. 2000. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82: 1023-1032.   DOI   ScienceOn
12 Shu ZY, Wu JG, Cheng LX, Chen D, Jiang YM, Li X, Huang JZ. 2012. Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Appl. Biochem. Biotechnol. 166: 536-548.   DOI   ScienceOn
13 Kobayashi DY, Reedy RM, Palumbo JD, Zhou JM, Yuen GY. 2005. A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl. Environ. Microbiol. 71: 261-269.   DOI   ScienceOn
14 Talukder MMR, Lee HZS, Low RF, Pei-Lyn LC, Warzecha D, Wu J. 2013. Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. J. Mol. Catal. B Enzym. 89: 108-113.   DOI   ScienceOn
15 Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168: 327-338.   DOI   ScienceOn
16 Wu SS, Kaiser D. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterselection with the Bacillus subtilis sacB gene. J. Bacteriol. 178: 5817-5821.
17 Krzeslak J, Papaioannou E, van Merkerk R, Paal KA, Bischoff R, Cool RH, Quax WJ. 2012. Lipase A gene transcription in Pseudomonas alcaligenes is under control of RNA polymerase sigma54 and response regulator LipR. FEMS Microbiol. Lett. 329: 146-153.   DOI   ScienceOn
18 Leong SA, Ditta GS, Helinski DR. 1982. Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J. Biol. Chem. 257: 8724-8730.
19 Liu W, Jia B, Zhao H, Xu L, Yan Y. 2010. Preparation of a whole-cell biocatalyst of Aspergillus niger lipase and its practical properties. J. Agric. Food Chem. 58: 10426-10430.   DOI   ScienceOn
20 Liu Y, Xu J, Hu Y. 2000. Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. J. Mol. Catal. B Enzym. 10: 523-529.   DOI   ScienceOn
21 McCarthy CN, Woods RG, Beacham IR. 2004. Regulation of the aprX-lipA operon of Pseudomonas fluorescens B 52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR-envZ. FEMS Microbiol. Lett. 241: 243-248.   DOI   ScienceOn
22 Howell CR, Stipanovic RD. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480-482.   DOI
23 Omar IC, Ilias N. 1996. Characteristics of cell-bound lipase production by a newly isolated strain of Aspergillus flavus. Pertanika J. Sci. Technol. 4: 1-9.
24 Pan XX, Xu L, Zhang Y, Xiao X, Wang XF, Liu Y, et al. 2012. Efficient display of active Geotrichum sp. lipase on Pichia pastoris cell wall and its application as a whole-cell biocatalyst to enrich EPA and DHA in fish oil. J. Agric. Food Chem. 60: 9673-9679.   DOI   ScienceOn
25 Gupta R, G upta N , Rathi P. 2004. B acterial l ipases: an overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64: 763-781.   DOI   ScienceOn
26 Jeganathan J, Bassi A, Nakhla G. 2006. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation. J. Hazard. Mater. 137: 121-128.   DOI   ScienceOn
27 Jin Z, Han SY, Zhang L, Zheng SP, Wang Y, Lin Y. 2013. Combined utilization of lipase-displaying Pichia pastoris whole-cell biocatalysts to improve biodiesel production in co-solvent media. Bioresour. Technol. 130: 102-109.   DOI   ScienceOn
28 Karadzic I, Masui A, Zivkovic LI, Fujiwara N. 2006. Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J. Biosci. Bioeng. 102: 82-89.   DOI   ScienceOn
29 Kim J, Jang SH, Lee C. 2013. An organic solvent-tolerant alkaline lipase from cold-adapted Pseudomonas mandelii: cloning, expression, and characterization. Biosci. Biotechnol. Biochem. 77: 320-323.
30 Kim KR, Kwon DY, Yoon SH, Kim WY, Kim KH. 2005. Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase. Protein Expr. Purif. 39: 124-129.   DOI   ScienceOn
31 Kim Y O, K hosasih V, N am B H, L ee S J, Suwanto A, K im HK. 2012. Gene cloning and catalytic characterization of cold-adapted lipase of Photobacterium sp. MA1-3 isolated from blood clam. J. Biosci. Bioeng. 114: 589-595.   DOI   ScienceOn
32 Grbavcic S, Bezbradica D, Izrael-Zivkovic L, Avramovic N, Milosavic N, Karadzic I, Knezevic-Jugovic Z. 2011. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. Bioresour. Technol. 102: 11226-11233.   DOI   ScienceOn
33 Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Defago G, et al. 2011. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 34: 180-188.   DOI   ScienceOn
34 Khan M, Jithesh K. 2012. Expression and purification of organic solvent stable lipase from soil metagenomic library. World J. Microbiol. Biotechnol. 28: 2417-2424.   DOI   ScienceOn