DOI QR코드

DOI QR Code

Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application

  • Lee, Seung Hwan (Department of Biotechnology and Bioengineering, Chonnam National University) ;
  • Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Institute of BioCentury, Korea Advanced Institute of Science and Technology)
  • Received : 2020.01.22
  • Accepted : 2020.02.07
  • Published : 2020.02.28

Abstract

We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.

Keywords

References

  1. Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  2. Madison LL, Huisman GW. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53. https://doi.org/10.1128/mmbr.63.1.21-53.1999
  3. Steinbuchel A, Valentin HE. 1995. Diversity of bacterial polyhydroxyalkanoic acid. FEMS Microbiol. Lett. 128: 219-228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  4. Steinbuchel A, Fuchtenbusch B. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427. https://doi.org/10.1016/S0167-7799(98)01194-9
  5. Jendrossek D, Handrick R. 2002. Microbial degradation of polyhydroxyalkanoates. Annu. Rev. Microbiol. 56: 403-432. https://doi.org/10.1146/annurev.micro.56.012302.160838
  6. Kumar A, Gross RA, Jendrossek D. 2000. Poly(3-hydroxybutyrate)-depolymerase from Pseudomonas lemoignei: Catalysis of Esterifications in Organic Media. J. Org. Chem. 65: 7800-7806. https://doi.org/10.1021/jo000814y
  7. Lee SJ, Park JP, Park TJ, Lee SY, Lee S, Park JK. 2005. Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 77: 5755-5759. https://doi.org/10.1021/ac0505223
  8. Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss RI. 1997. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29-34. https://doi.org/10.1038/nbt0197-29
  9. Chen W, Georgiou G. 2002. Cell-surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol. Bioeng. 79: 496-503. https://doi.org/10.1002/bit.10407
  10. Lee SY, Choi JH, Xu J. 2003. Microbial cell surface display. Trends Biotechnol. 21: 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
  11. Benhar I. 2001 Biotechnological applications of phage and cell display. Biotechnol. Adv. 19: 1-33. https://doi.org/10.1016/S0734-9750(00)00054-9
  12. Smith MR, Khera E, Wen F, 2015. Engineering novel and improved biocatalysts by cell surface display. Ing. Eng. Chem. Res. 54: 4021-4031. https://doi.org/10.1021/ie504071f
  13. Shimazu M, Mulchandani A, Chen W. 2001. Cell surface display of organophosphorus hydrolase using ice nucleation protein. Biotechnol. Prog. 17: 76-80. https://doi.org/10.1021/bp0001563
  14. Lee SH, Choi J, Han M-J, Choi JH, Lee SY. 2005. Display of lipase on the cell surface of Escherichia coli using OprF as an anchoring motif and its application to enatioselective resolution in organic solvent. Biotechnol. Bioeng. 90: 223-230. https://doi.org/10.1002/bit.20399
  15. Matsumoto T, Ito M, Fukuda H, Kondo A. 2004. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 64: 481-485. https://doi.org/10.1007/s00253-003-1486-1
  16. Hiraishi T, Yamashita K, Sakono M, Nakanishi J, Tan L-T, Sudesh K, et al. 2012. Display of functionally active PHB depolymerase on Escherichia coli cell surface. Macromol. Biosci. 12: 218-224. https://doi.org/10.1002/mabi.201100273
  17. Tan L-T, Hiraishi T, Sudesh K, Maeda M. 2013. Directed evolution of poly[(R)-3-hydroxybutyrate] depolymerase using cell surface display system: functional importance of asparagine at position 285. Appl. Microbiol. Biotechnol. 97: 4859-4871. https://doi.org/10.1007/s00253-012-4366-8
  18. Saito T, Suzuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, et al. 1989. Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J. Bacteriol. 171: 184-189. https://doi.org/10.1128/jb.171.1.184-189.1989
  19. Lee S H , Choi J, P ark SJ, Lee SY, Park BC. 2004. Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl. Environ. Microbiol. 70: 5074-5080. https://doi.org/10.1128/AEM.70.9.5074-5080.2004
  20. Schumacher SD, Hannemann F, Teese MG, Bernhardt R, Jose J. 2012. Autodisplay of functional CYP106A2 in Escherichia coli. J. Biotechnol. 161: 104-112. https://doi.org/10.1016/j.jbiotec.2012.02.018
  21. Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, et al. 2020. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 709: 136138. https://doi.org/10.1016/j.scitotenv.2019.136138
  22. Lee SH, Lee SY, Park B. 2005. Cell surface display of lipase on the Pseudomonas putida using OprF as an anchoring motif and its biocatalytic applications. Appl. Environ. Microbiol. 71: 8581-8586. https://doi.org/10.1128/AEM.71.12.8581-8586.2005