• Title/Summary/Keyword: white-noise

Search Result 1,077, Processing Time 0.022 seconds

AUTONOMIC MECHANISMS OF AN ACUTE STRESS RESPONSE DURING WORD RECOGNITION TASK PERFORMANCE WITH INTENSE NOISE BACKGROUND (백색소음하의 단어재인검사 수행에 따른 자율신경계 스트레스 반응)

  • ;;;Estate Sokhadze
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.127-132
    • /
    • 1999
  • Cardiovascular, respiratory and electrodermal responses to acute stress episodes modeled by combined presentation of intense white noise and performance of word recognition task with noise background were studied in 15 college students. Experimental procedure consisted in sessions with white noise, word recognition task presentation with noise background and test with noise background. Recorded physiological variables were analyzed in terms of their sensitivity to detect activation of sympathetic and parasympathetic branches of autonomic nervous system and thus reflect autonomic arousal level during shout-term stress-inducing experimental manipulations. It was shown that performance of effortful mental task with noise background elicited significant physiological responses typical for active coping behavior, namely electrodermal arousal and increased cardiovascular activity. this response profile was more profound as compared to white noise only or attending task in noise background. However, all physiological responses were mostly phasic, without long-term tonic changes, since almost all variables recovered to their initial baseline levels, suggesting that dominant autonomic mechanisms in transient acute stress episodes were of parasympathetic nature (withdrawal in stress with subsequent activation in restoration period), while sympathetic contribution was not long-lasting. Nevertheless, increased number of stressors and their longer exposure may result in higher profile of tonic sympathetic arousal and reduced functional role of vagal mechanisms in autonomic balance regulation.

  • PDF

A Study on the Denoising Method by Multi-threshold for Underwater Transient Noise Measurement (수중 천이소음측정을 위한 다중 임계치 잡음제거기법 연구)

  • 최재용;도경철
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.576-584
    • /
    • 2002
  • This paper proposes a new denosing method using wavelet packet, to reject unknown external noise and white gaussian ambient noise for measuring the transient noise which is one of the important elements for ship classification. The previous denosing method applied the same wavelet threshold at each node of multi-single sensors for rejecting white noise is not adequate in the underwater environment existing lots of external noises. The proposed algorithm of this paper applies a modified soft-threshold to each node according to the discriminated threshold so as to reject unknown external noise and white gaussian ambient noise. It is verified by numerical simulation that the SNR is increased more than 25㏈. And the simulation results are confirmed through sea-trial using multi-single sensors.

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

Adaptive Estimation of Monotone Functions

  • Kang, Yung-Gyung
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.485-494
    • /
    • 1998
  • In the white noise model we construct an adaptive estimate for f(0) for a decreasing function f. We also show that the maximum mean square error of this estimate attains the same rate as the minimax risk simultaneously over a range of Lipschitz classes of order less than or equal to one.

  • PDF

Vertical Seismic Vibration of Suspension Bridges (지진을 받는 현수교의 수직진동)

  • Choi, Jee-Hoon;Lee, Jon-Ja;Kim, Su-Bo;Lee, Yong-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.581-593
    • /
    • 2000
  • In this study, vertical dynamic analyses on the suspension bridges under seismic load are developed. Time domain analysis, random vibration analysis, and spectral analysis are formulated theoretically. The random nitration analysis is checked by numerical integration and the mathematical integration with correlation coefficient which include CQC and SRSS method in the conditions of white noise and filtered white noise. Beam, truss and frame elements are used in order to model the suspension bridge. Geometric stiffness due to dead load is considered for cable and tower.

  • PDF

Noisy Speech Enhancement by Restoration of DFT Components Using Neural Network (신경회로망을 이용한 DFT 성분 복원에 의한 음성강조)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1078-1084
    • /
    • 2010
  • This paper presents a speech enhancement system which restores the amplitude components and phase components by discrete Fourier transform (DFT), using neural network training by back-propagation algorithm. First, a neural network is trained using DFT amplitude components and phase components of noisy speech signal, then the proposed system enhances speech signals that are degraded by white noise using a neural network. Experimental results demonstrate that speech signals degraded by white noise are enhanced by the proposed system using the neural network, whose inputs are DFT amplitude components and phase components. Based on measuring spectral distortion measurement, experiments confirm that the proposed system is effective for white noise.

Improvement of Signal-to-Noise Ratio for Speech under Noisy Environment (잡음환경 하에서의 음성의 SNR 개선)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1571-1576
    • /
    • 2013
  • This paper proposes an improvement algorithm of signal-to-noise ratios (SNRs) for speech signals under noisy environments. The proposed algorithm first estimates the SNRs in a low SNR, mid SNR and high SNR areas, in order to improve the SNRs in the speech signal from background noise, such as white noise and car noise. Thereafter, this algorithm subtracts the noise signal from the noisy speech signal at each bands using a spectrum sharpening method. In the experiment, good signal-to-noise ratios (SNR) are obtained for white noise and car noise compared with a conventional spectral subtraction method. From the experiment results, the maximal improvement in the output SNR results was approximately 4.2 dB and 3.7 dB better for white noise and car noise compared with the results of the spectral subtraction method, in the background noisy environment, respectively.

ONE-PARAMETER GROUPS AND COSINE FAMILIES OF OPERATORS ON WHITE NOISE FUNCTIONS

  • Chung, Chang-Hoon;Chung, Dong-Myung;Ji, Un-Cig
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.687-705
    • /
    • 2000
  • The main purpose of this paper is to study differentiable one-parameter groups and cosine families of operators acting on white noise functions and their associated infinitesimal generators. In particular, we prove the heredity of differentiable one-parameter group and cosine family of operators under the second quantization of the Cuchy problems for the first and second or der differential equations.

  • PDF