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ONE-PARAMETER GROUPS AND COSINE FAMILIES
OF OPERATORS ON WHITE NOISE FUNCTIONS

CHaNG-HooN CHUNG, DoNG MYUNG CHUNG!, AND UN Ci1G Jr?

ABSTRACT. The main purpose of this paper is to study differen-
tiable one-parameter groups and cosine families of operators acting
on white noise functions and their associated infinitesimal gener-
ators. In particular, we prove the heredity of differentiable one-
parameter group and cosine family of operators under the second
quantization. As an application, we discuss the existence of the
unique solution of the Cauchy problems for the first and second or-
der differential equations.

1. Introduction

Let W C (L% C W~ be the framework of white noise distribution
theory recently introduced by Cochran, Kuo and Sengupta in [7] as a
new class of white noise distributions which contains interesting noises
such as the Poisson noise.

Gross[10] and Piech[27] initiated the study of Gross Laplacian and
number operator, as natural infinite dimensional analogues of a finite
dimensional Laplacian, in connection with the Cauchy problems in infi-
nite dimensional abstract Wiener space. Recently, white noise approach
to Cauchy problems in infinite dimension has been studied extensively
by many authors ([1]-[4], [8], [15], [16], [20]-[23], [26]) and becomes an
interesting area.

In [12], Hida, Obata and Sait6 proved that the heredity of regular
one-parameter group of operators on (£) under the second quantization.
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Being motivated by this result, in this paper, we shall prove the hered-
ity of differentiable one-parameter group and cosine family of operators
under the second quantization. Our result shows that Theorem 4.1 in
[12] is true without regularity condition.

The paper is organized as follows. In Section 2, we recall some ba-
sic notions and results in the white noise distribution theory. In Sec-
tion 3, motivated by the results in [1]-[4] and [25], we introduce a
class of transformations acting on W and then prove that the opera-
tor Zgm(k) + dI'(K) is similar to dT'(K'), where =g ,(x) and dI'(K) are
the integral kernel operator and the second quantized differential oper-
ator of K, respectively, and x € (E€™)im, K € L(Ec) satisfy certain
conditions. In Section 4, we discuss differentiable one-parameter groups
of operators on W and their infinitesimal generators. In particular, we
prove that for any differentiable one-parameter group {{}ycr of oper-
ators on &¢, {I'(£2)}ger becomes a differentiable one-parameter group
of operators on W, where I'({)y) is the second quantization of Qy. In
Section 5, we first discuss differentiable cosine families of operators on
W and their infinitesimal generators and then prove that {I'(£%)}scr
becomes a differentiable cosine family of operators on W for any differ-
entiable cosine family {Q}scr of operators on E. In Section 6, as an
application, we shall discuss the existence of the unique solution of the
Cauchy problems for the first and second order differential equations.

2. Preliminaries on white noise distribution theory

In this section, we shall briefly recall the Cochran—-Kuo—Sengupta
space and operator theory on this space.

2.1. The Cochran—-Kuo-Sengupta space

Let H = L*(R, dt) be the real Hilbert space of all square integrable
functions on R with norm |- |p and let S(R) be the Schwartz space of
R-valued rapidly decreasing C*°-functions and S’'(R) be the strong dual
space of S(R), i.e., the space of tempered distributions. Then we have
a Gel’fand triple

(2.1) £=S[R) CH = LXR,dt) C S'(R) = &~.

Note that the Gel'fand triple (2.1) can be reconstructed in the standard
manner [13], [22], [25], using the positive self-adjoint operator A = 1 +
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t? — d?/dt? with Hilbert-Schmidt inverse. Since £ is a nuclear Frechet
space equipped with the Hilbertian norms |¢], = |AP{[y, p € R, there

exists a Gaussian measure p on £* whose characteristic function is given
by

[ ewtie oy e {-Jek}.  eee,

where (-, -) is the canonical bilinear form on £* x £. Then (£*, i) is called
the white noise space or Gaussian space.

We denote by (L?) the complex Hilbert space of u-square integrable
functions on £* with norm || - ||;. By the Wiener-1t6 decomposition
theorem, each ¢ € (L?) admits an expression

o0
(2.2) d(x) = Z(:a:@":, fu)s re&, f,eHI,

n=0

where H%"is the n-fold symmetric tensor product of the complexification
of H and :z®": denotes the Wick ordering of z®". Moreover, the (L?)-
norm | @||o of ¢ is given by

00 1/2
8llo = (anlfnlg) :
n=0

where | - o denotes the H%’"-norm for any n.
Now, let {a(n)}22, be a sequence satisfying the following conditions:
(A1) a(0) =1 and inf afn) > 0;
(A2) The function Gu(t) = >, (a(n)/n!) t" has an entire analytic ex-
tension;
(A3) The power series

Calt) = it"ngf:n) (Hig GZ’SS))

n=0

has a positive radius of convergence.
There is a non-trivial example of {a(n)} satisfying (A1)-(A3) which is
given by the k-th order Bell numbers {Bi(n)} defined by

k—times

_ explexp(---(expt) ) = Bi(n) ,,
(2.3) Gren)(t) = exp(exp(--- (exp0)---)) Z &
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for more details see [7].
For each p > 0, define

. 1/2
I6llp. = (Z n!a(n)lfnlf,> , (L),
n=0

where ¢ is given as in (2.2). Let W, = {¢ € (L?) : ||§]|p+ < oo} and let
W be the projective limit of {W, : p > 0} and W* be the topological
dual space of W. Then we have a Gel’fand triple

(2.4) W c (LY c wr,

which is called the Cochran-Kuo-Sengupta space. In particular, (2.4)
is called the Hida-Kubo-Takenaka space or the Kondratiev-Streit space
[17] according as a(n) = 1 or a(n) =n!?, 0 < B < 1 and denoted by

Ec@)cE)r, (EpcL?)c (@)
respectively. The canonical bilinear form on W* x W is denoted by (-, -)).

2.2. S—transform

For each £ € &, the ezponential vector ¢ € W is defined by

b ®n
N~/ 7N\ _1
o) = 3 (10 £ = e (10,6 - 560)).
It is well-known that {¢¢;& € Ec} spans a dense subspace of W.

For ® € W*, the S—transform S® of ® is a C—valued function on &¢
defined by

S(I)(é) - <<<I)a¢€>>7 £ € &c.

Then & € W* is uniquely determined by the S—transform S® of ®. The
following analytic characterization theorem for generalized white noise
functional in terms of S—transform is proved in [7].

THEOREM 2.1. Let F be a C-valued function on £&c. Then F is the
S—transform of some ® € W* if and only if F satisfies the following
conditions:

(F1) for each &, € &, the function z — F(z& +n) is entire on C;
(F2) there exist C > 0 and p > 0 such that

PP < CGa([E),  €€ée
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In this case, for each q > 1/2 with éa(HA“IHf{qS) < 00,
1212 g < CCall AT Is).

For the analytic characterization theorem for S-transform of test
white noise functional, we assume that G, satisfies the following con-
dition:

(25)  lmsup { <9;(:—)) e inf (; (Gy /a(fr))l/") } < oo

It is a sufficient condition for (2.5) that the sequence 1/(a(n)n!) is log-
concave (see, Theorem 4.3 in [7]). For example, if {a(n)} is a sequence
of the second order Bell numbers, i.e., a(n) = By(n) for all n > 1, then
a(n+1)? < a(n)a(n+2) for all n > 1 (see, Proposition in [9]) and hence
1/(a(n)n!) is log—concave. The condition (2.5) implies that the power

series
= 2\ nPan) (. Gyals)
Gt = 3 (g 25 )
n=0 :

has a positive radius of convergence.
The following characterization theorem for test white noise functional
is proved by a simple modification of the proof of Theorem 2.1.

THEOREM 2.2. Let F be a C-valued function on Ec. Then F is the
S—-transform of some ¢ € W if and only if F' satisfies the condition (F1)
and

(F2') for any p > 0, there exists K > 0 such that
IFE)F < KGallEl2,), €€
In this case, for each py > 1/2 with 51/Q(I|A‘1H%f’s°) < 00,

100G poys < KGralllATY|20).

2.3. Operator symbols and integral kernel operators

For locally convex spaces X, %), let £(X%,9)) denote the space of con-
tinuous linear operators from X into ). We always assume that £(%,9))
is equipped with the topology of uniform convergence on every bounded
subset. For the notational convenience, we write £(X) = L(X, X).
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For = € LW, W), the symbol Z of = is a C—valued function on
Ec x Ec defined by

2,n) = (See, 6n),  EmE e

An operator = € L(W, W*) is uniquely determined by its symbol g

The following is an analytic characterization theorem for operator
symbols, the first assertion has been proved in [5] and the second asser-
tion can be proved by using the similar arguments as in the proof of the
first assertion.

THEOREM 2.3. Let © be a C-valued function defined on & x &c.
Then © is the symbol of an operator = € L(W,W?*) if and only if ©
satisfies the following conditions:

(S1) for each &, &1,m,m € Ec, the function
(z,w) = ©(2€ + &, wn + M)

is an entire function on C x C;
(S2) there exist constant numbers K > 0 andp > 0 such that

0 n)I° < KGa(I€}))Gallnlp),  &neée

Moreover, © is the symbol of an operator £ € L(W) if and only if ©
satisfies the condition (S1) and

(S2) for any p > 0, there exist constant numbers K > 0 and q > 0 such
that

(&) < KGa(l€l3)Gralinly),  &m € e
In this case, for each r,py > 1/2 with Go(|JAYZ) < oo and él/a
(1A~ < oo,

120012 . < KCall A )1 /llAT EDS 51 irsr S EW

Let [, m > 0 be integers. For each x € (&2 (Hm))*, there exists a unique
Sim(K) € LOW, W*) such that

(2.6) Ein(K)(En) = (5, @ ™S, £ ne e

Then Z; (k) is called the integral kernel operator with kernel distribu-
tion  (see; [5], [12], and [25]). To discuss about integral kernel opera-
tors acting on W, we need more assumptions for the weighted sequence

{a(n)}:
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(A4) there exists C; > 0 such that a(m)a(n) < C7"™"a(m + n);
(AS5) there exists C, > 0 such that a(m +n) < C7*"a(m)a(n).
If the weighted sequence {a(n)} satisfies the assumptions (Al)-(A5),
then =, (k) € L(W) if and only if k € E' @ (EZ™)* (see; [5]).

Let K € L£(&c). Then by the kernel theorem, there exists a unique
Ak € & ® &G such that

(27) </\K>€ ® 77> = (K,’]a£>a fﬂ? € gC-

In fact, for any n € &, K7 equals to the right contraction Ag ®; 7. The
integral kernel operator Z;;(Ax) with kernel distribution Mg is called
the second quantized differential operator of K and denoted by dI'(K),
i.e., dI'(K) is defined by

(2.8) (dT(K) e, ) = (K& e, &ne &

3. Transformations on white noise functions

From now on, the weighted sequence {a(n)} satisfies the conditions
(A1)-(A5) and the condition
(A6) there exists a constant K > 0 such that exp {e'} < KG,(t), t > 0.

Let k € (£2™)*, m € N and let B € £L(Ec). Then by Theorem 2.3,
there exists a unique G, g € L(W) such that

(3.1) Grpde = exp {(k,6°™)} dpe, €€ &c.

In fact, by using the assumption (A6), we can easily show that the
function ©(&,n) = (Gx,poe, ¢y,)) satisfies the condition (S2’) in Theorem
2.3.

By using (3.1), we can easily show that Gy p coincides with the second
quantization operator I'(B) of B, where I'(B) is defined by

(o]

L(B)g(x) = Y (:2®":, B f,)

n=0

for any ¢ € W given as in (2.2). Moreover, G, ; = e%*®)_ Hence we
have the following expression:

(3.2) Gup = I(B) o e5om®),
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For a locally convex topological space X, let GL(X) denote the set of
all linear homeomorphisms on X.

THEOREM 3.1. Let G = {G. 5|k € (6€™)*,B € GL(&c)} is a sub-
group of GL(W). Moreover, for each (k,B) € (E€™)*x GL(&),
G_((B-1yyemn,g1 € GL(W) is the inverse of G, p.

Proof. The proof follows from the following composition formula: for
any &, &' € (E8™)im and B, B' € L(Ec)
(33) gh‘,/,B/gh‘,,B praaed gh‘,+(B*)®"'N’,B’B' D
THEOREM 3.2. Let k € (E8™):m, &' € (E8™):,m and B € GL(c),

sym?’ sym

K € L(&c). Then we have the following properties:

(1) Gr5Zom (k') = Zom ((B)")*™K)Gn5;

(i) If I1®™ D ® K*)k = ak, a € C and [B, K] = 0, then we have
Gr5Z211(Ak) = (E11(Ak) + maSom(((B™1)")®™k)) G, 53
(i) If (I®™ V) ® K*)k = ax, o € C with o # 0 and [B, K] = 0, then
we have
G_1/(mayn.B(Zom(K) +Z1,1(Ak)) = E1,1(Ak)G-1/(ma)s,B-
Proof. (i) For any £ € &, we obtain that
gn,BEO,m’(K'/)Qsﬁ - (K//a §®m’> eXp{ (K’a §®m>}¢B§
= S0 ((B™)")®™ &')Gr 5.

Since G, g € L(W) and all exponential vectors span a dense subspace of
W, the equality (i) is proved.

(ii) It follows from [5] that for any x € (&™),

E1,1(Ak)Z0m (k)
= 51’1()\}() < Eo’m(li)
and
Egvm(fi)El,l(/\K) = 51,1()\]{) <o Eoym(lﬁ) + mEO,m(fi ®1 )\K),

where ¢ is the Wick product (see [5]) and k @' A is the left contraction
(see [25]). By the assumption (I®™ V) @ K*)k = ak, Zom(k ®' Ak) =
aZym(x). Hence we have

[E11(Ak), Bom(K)] = —maSom(k).
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Therefore, we obtain that
SNz (Ag) = (Z1.1(Ak) + maZg nm(k))e%on®),
On the other hand, we have from the assumption [B, K] = 0 that
['(B)Z11(Ak) = E11(Ak)T(B).
Also, we can easily verify that
L(B)Zom(k) = Zom(((B7')")®"K)T(B).
Hence by (3.2), the equation (ii) is satisfied.
(iii) From (1) and (ii), we obtain that for any «, k' € (E™)*
B (Som(k ) E1 1(/\K))
(E V)™ (K' + mak)) + 5171(/\;()) Gx.B-
Thus we complete the proof. O
In the proof of (ii) in Theorem 3.2, we have shown that if (I®(m~1) g
K*)k =0, then
[E1,1(Ak), Eom(k)] = 0.

In Theorem 3.2, the equation (iii) is satisfied in the case B = I. Hence
for the simple notation, we write G, = G_1/(max,1-

COROLLARY 3.3. Let & € (E™);, and B € GL(Ec). Then we have
the following properties:
(i) GupN = (N +mZom(((B~1)*)®™x)) Gr.B;
(1) G-1/pmapw.B(Eom(k) + aN) = aNG_i/imas,B, for any a € C with
a # 0.

Proof. The proof is straightforward by applying Theorem 3.2 with
K =al O
4. Differentiable one—parameter transformation groups

From now on, let X denote a barreled locally convex space over C and
let {|| - [lp}pea be a set of seminorms which determines the topology of
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DEFINITION 4.1. A family {Q}ecr C L£(X) is called differentiable in
6 € R if for each § € R, there exists 2 € L(X) such that

lim Qo+h¢>h— Qo %0

lim =0 forall ¢ € X and p € A.

p

If a family {Qp}ger C L£(X) is an one-parameter subgroup of GL(X),
ie.,
le+92 = leﬂgz, 04,0, € R, Q=1 (identity),

then {Qp}scr is differentiable in # € R if and only if {Q}eer is differen-
tiable at 0, i.e., there exists = € £(X) such that
lim o — ¢
h

h—0

—
.
—

=0 for all ¢ € X and p € A.
P

In that case, Z is unique and is called the infinitesimal generator of a
differentiable one-parameter subgroup {Qp}eer. Note that if {Qg}eer
is a differentiable one-parameter subgroup of GL(X) with infinitesimal

generator = € L(X), then it is easily shown that {Qp}scr is infinitely
many differentiable and

d"$y
dor

¢ = Q="¢ = E"U, peXx, ek

THEOREM 4.2. Let K € L(&c). Then K is the infinitesimal gener-
ator of a differentiable one-parameter subgroup {Qp}ger C GL(Ec) if
and only if dT'(K) is the infinitesimal generator of a differentiable one-
parameter subgroup {T'(Q)}ser C GL(W).

Proof. 1t is obvious that {I'(€%)}ser is a one-parameter subgroup of
GL(W). We now prove that I'(Q)¢ is differentiable in § € R and dI'(K)
is the infinitesimal generator of {I'(€) }ser. We put

F(6) = (L), dp)) = €47, £,n € &
Then we have
1(0) = (K€, me ™47

and
£1(8) = (K€, 1) + (K€, ) Wb,
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Let 6y > 0 be fixed. Then by applying Baire category theorem, for any
r > 0 there exist ¥ > 0 and C; > 0 such that

maX |KQ0€I7‘ < Cl|€|r+r, max |K290§|7‘ < Cl|£lr+r’
6]<é 161<60

since )y is continuous in 8 € R. Therefore, for any p > 0, there exist
C = C(K,6p) > 0 and ¢ > 0 such that

max'f ( )| < CGq (i§|p+q)G1/a(|n|ip)‘

16<8g

Now we put

90(&,m) = £(0) — f(0) — f'(0)4.
Then by the Taylor theorem, whenever || < §; it follows that

weml < S max|s6)

|9|2

IA

CG (I€|p+q Gl/a(|n|2—p)7 fﬂ?e SC'

It then follows from Theorem 2.3 that there exists Zy € L(W) such that
=9 = gg and
(4.1)

2
20012 e < O CG(A ) osa A G gsr 161 <

where 7, pp > 1/2 with Ga(||A~1%) < oo and Gy (A1) < 0. On
the other hand,

fl(o)(fﬂl) = <K§,77>€<€’n>a 67” € E(C-

Hence we have

2y = D(Q) — I — 6dT(K).
It follows from (4.1) that

L(Q)o—¢
SuPjg,., , <1 || N2 — dT (K )fi’”p_m

< YOG, (1A %) Gl A1) — 0

as f — 0.
The proof of the converse is obvious since

F(Qg)(fb,§> = <$’Q9£>7 dF(K)<I,§> = <$aK§>> S 8*a é € &
and |[(z, &)|p+ = a(1)|€], for all £ € & and p > 0. O
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REMARK. Theorem 4.2 is true for the Hida-Kubo-Takenaka space,
ie. K € L(&) is the infinitesimal generator of a differentiable one-
parameter subgroup {Q}ser C GL(Ec) if and only if dT'(K) is the infin-
itesimal generator of a differentiable one-parameter subgroup {I'() }sez

C GL((&)).

THEOREM 4.3. Let {Qp}scr C GL(Ec) be a differentiable one-para-
meter subgroup with the infinitesimal generator K € L(Ec) and let
K € (E8™)m satisty (I®™D @ K*)k = 0. Then {Gp0, }oer is a differ-
entiable one-parameter subgroup of GL(W) with the infinitesimal gen-

erator Zy (k) + dI'(K).

Proof. The assumption (I®™-1) ® K*)x = 0 implies that

d *\®m m — * m M

7@, €5™) = m((I%") @ K*)k, Q§"€™) =0, € € &c.
It follows that

((2%)°"s — 5,6°™) =0,  €£€éc
Hence (Q5)®™k = k and by (3.3), we have
9
gelh‘,,Qol ggzh‘,,ﬂgz = g(01+02)n,991-02> 01’ 92 € R

Since Go1 = I, {Gox.0, }ocr is a one-parameter subgroup of GL(W). Also,
by the similar arguments as in the proof of Theorem 4.2, we can prove
that {Gp.0,}ocr is a differentiable one-parameter subgroup of GL(W)
with the infinitesimal generator =, (k) + dI'(K). O

The following lemma is obvious.

LEmMMA 44. If Z € L(W) is the infinitesimal generator of a dif-
ferentiable one-parameter subgroup {Qg}ecr of GL(W), then for any
G € GL(W), G™'2G is the infinitesimal generator of a differentiable
one-parameter subgroup {G QG }ecr of GL(W).

THEOREM 4.5. Let {Qy}oer C GL(Ec) be a differentiable one-para-
meter subgroup with the infinitesimal generator K € L(Ec) and let
K € (E&™)im satisfy (I®™ D ® K')k = ak, a € C with o # 0. Then

{Q%}oer Is a differentiable one-parameter subgroup of GL(W) with the
infinitesimal generator = (k) + dI'(K'), where

Qs = G1/(ma) ()5 - 1)x. Q%> 6 €R.
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Proof. By Theorem 4.2, {I'(§%)}.cc is a differentiable one-parameter
subgroup of GL(W) with the infinitesimal generator dI'(K). On the
other hand, I'(§) = Goq,, 6 € R. Hence, by Lemma 4.4, {QNQO,QGC;1}96R
is a differentiable one-parameter subgroup of GL(W) with the infinites-
imal generator Zg,(x) + dI'(K), where G;' = Gi/(mas,1. Therefore, by
(3.3), we have

GG, = gl/(ma)((ng)@n—l)n,ng'

This completes the proof. a

REMARK. In general, Theorem 4.3 and 4.5 is true for the Kondratiev—
Streit space with 0 < 5 < 1 depending on m € N.

5. Differentiable cosine families of operators
We start with the definition of cosine family of operators.

DEFINITION 5.1. A one parameter family {Cp}ser C L(X) is called a
differentiable cosine family if
(i) Co,r, + Coy—g, = 2Cy,Cy, for all 6,,6, € R
(i) Co=1
(iii) for each ¢ € X, Cy¢ is twice differentiable in § € R.
The operator Z € L(X) defined by

d2
Z¢ = —C
b= ggleo| . #eX
is called the infinitesimal generator of {Cy}ecr. Then the associated sine
family {Sp}eer C L(X) is defined by

0
Sep = / Cudu, peXx, 0ekR,
0

where the integral is in the Pettis sense.

Note that if {Cyp}eer C L(X) is a differentiable cosine family with the
infinitesimal generator = € £(X), then it is easily shown that {Cp}gcr is
infinitely many differentiable and
(56.1)

dfznc . d2n+lc o
Wzn%:: Co, wmfgszssm, pEX, 0€R, n>1

Moreover, [Cp,=] = 0 and [Sp, Z] = 0 for all § € R.
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THEOREM 5.2. Let K € L(&c). Then K is the infinitesimal gener-
ator of a differentiable cosine family {Co(K)}oer C L(Ec) if and only
if dI'(K') is the infinitesimal generator of a differentiable cosine family

{T(Co(K)) }oer C L(W).

Proof. Obviously, {I'(Cy(K))}eer satisfies the conditions (i) and (ii)
in Definition 5.1. To prove that for each ¢ € W, ['(Cy(K))¢ is twice
differentiable in § € R and I'(Cy(K))"¢ = dI'(K)¢, we use the same
arguments as in the proof of Theorem 4.2. For each 6 € R, we put

F(h) = (T(Cosn(K))e, $) = BB ¢ nete, heR.
Then we have

f'(h) = (K Sgn(K)E,metisn
and
F"(h) = (K Spen(K)&,m)* + (KCorn(K)E, 1)) elrmsFEm.
Let hy > 0 be fixed. Then for any p > 0, there exist C = C(K, hy) > 0
and ¢ > 0 such that

max |1 (k)] < CCa(l€l}.,)Crsallnl?,):

Now we put
gn(&,m) = f(h) — f(0) = f(0)h.
Then we obtain that

el < BLoG, (e, )eunlnl,),  emete IM<h

It then follows from Theorem 2.3 that there exists =, € £L(W) such that
Eh = gn and
(5.2)

h _
IE01 - < B O (1A Byl EROEegirsr 11 B

where 7, py > 1/2 with G,(||A™"||Z%) < 00 and G /o (|| A~[|22) < 00. On
the other hand, we see that

F/(0)(&m) = (KSy(K)g, m)e @, ¢, € ¢
satisfies the conditions (S1) and (S2') in Theorem 2.3. Therefore, there
exists ['(Cy(K))" € L(W) such that ['(Co(K)) = f'(0). Hence we have

En = T(Corn(K)) = T(Co(K)) — hT(Co(K))'.
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From (5.2), it follows that

['(Cosn(K))p —T(Co(K)) 9
h

sup
”¢”p4—q—r <]-

Ihi

—T(Co(K))'¢

p—Po,+
S CC (1A ) Grya (AT IF) —

as h — 0. Slmllarly, we can prove that for each ¢ € W, I'(C4(K))o is
twice differentiable and

(T (Co(K))" ¢, bn)
= ((KSy(K)E,m)? + (KCy(K)E,m)) 4R ¢ € gc.
Since (KSy(K)E,n) =0,

(T(Co(K))" e, dn) = (KEmeE™, € ne ke
Hence for each ¢ € W, TI'(Cy(K))¢ is twice differentiable in § € R and
['(Co(K))'¢ = dT'(K)¢.

The proof of the converse is obvious since

0 0
/ P(Cu(K))pdu = T( / CAK)dw)p,  peW.
0 0
Thus the proof is completed. d

THEOREM 5.3. Let K € L(&c) be the infinitesimal generator of a
differentiable cosine family {Cy(K)}ser and let £ € (EE™)iy satisfy
(I8 VQK*)k = ax, a € C witha # 0. Then Z (k) +dT(K) is the in-
finitesimal generator of a differentiable cosine family {G'T(Cp(K )Gy }oer-

Proof. By Theorem 5.2, dT'(K) is the infinitesimal generator of a dif-
ferentiable cosine family {I'(Co(K))}oecr. Note that if = € L(W) is the
infinitesimal generator of a differentiable cosine family {Cg( ) }oer and
= € L(W) satisfies that there exists G € GL(W) such that &' = G71=G,
then =’ is the infinitesimal generator of a differentiable cosine family
{Co(Z") }oer, where Co(Z') = G 'C4(2)G, 6 € R. Thus, by (iii) in Theo-
rem 3.2, the proof is obvious. |

6. Cauchy problems

Let = € L(W) be the infinitesimal generator of a differentiable one-
parameter subgroup {€}ser of GL(W) and let ¢ be given in W. Then
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the unique solution of the Cauchy problem for the first order differential
equation of the following type:
ou
i
is immediately obtained by u(6, z) = Qy¢é(x).

Now we shall discuss the Cauchy problem for the second order differ-
ential equation of the following type:

(6.1) Zu, u(0,z) = ¢(x), feR, ze€&

(6.2)
v _ ou(0, z) .
02 = =t u(0,z) = ¢(x), 50 = (z), fecR, zec&.

where ¢,7 are given in W and = € L(W). We easily see that the
Cauchy problem (6.2) is equivalent to the Cauchy problem for the first
order differential equation:

(6.3)
O (u\ (01 u u(0,2) \ [ ¢ .
%(g_z>_<5 O)(%)a(Bua((()),z))—(w),eER,.’L‘eg
Put

o {(2):anen)

For each p > 0, define a norm on W x W by

'( fZ ) = (I8l + I1915.)

Pt
Then W x W becomes a nuclear Frechet space with the topology induced
by the family of norms {||(:)ll,.+ }»>0-

1/2

Let {Cs(Z)}ser C L(W) be a differentiable cosine family with the
infinitesimal generator = € L(W) and let {S3(E)}ser C L(W) be the
associated sine family. Then by direct computation, we obtain that for
any 01,0, € R

(64) 891+02 (E) + 891—92 (E) = 2891 (E)Cﬁz (E)
and
(65) 591+02 (E) - 891-92 (E) = 2091 (E)ng (E)

By using (6.4), (6.5), and (i) in Definition 5.1, we can prove that
{Ko(Z)}oer is a differentiable one-parameter group of continuous linear
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mo

operators on W x W with the infinitesimal generator

for each § € R, Ky(Z) € LW x W) is defined by

<a(3)-(58 $8)(2)

Therefore, the following theorem is straightforward.

I
0 ) , Where

THEOREM 6.1. Let ¢,9 € W and let Z € L(W) be the infinitesimal
generator of a differentiable cosine family {C4(Z)}oer C L(W) and let
{8¢(Z)}per be the associated sine family. Then there exists a unique

solution u(@,z) € W of the Cauchy problem (6.2) which is given by
(6.6) u(z,0) = C(E)d(x) + Se(Z)¢(x), ze&, OeR.
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