• 제목/요약/키워드: wheel-rail contact force

검색결과 61건 처리시간 0.031초

휠-레일 접촉 알고리즘 개발 및 동역학 해석 (Developement of the Wheel-Rail Contact Algorithm and Dynamic Analysis)

  • 조재익;박태원;윤지원;김지영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.963-969
    • /
    • 2010
  • The railway vehicle consists of wires, bodies, bogies and wheelsets, and each part has very complex mechanism. In this paper, wheel-rail contact algorithm is implemented using C++ and inserted into the ODYN which is a dynamic analysis program. To analyze wheel-rail contact mechanism, information such as contact points, contact angle and rolling radius is calculated according to the wheel and rail profile. Using this information, a table for the calculation of the wheel-rail contact analysis is made according to the lateral displacement. And, the creepage and normal force are calculated and a creep force is estimated by the FASTSIM. To verify the reliability of the wheel-rail contact algorithm, results of the program are compared with the ADAMS/Rail and paper. Finally, a wheelset of the railway vehicle is modeled using ODYN and simulated static and dynamic analysis. And, to verify the reliability of the simulation results, a displacement, velocity, acceleration and force are compared with results of ADAMS/Rail.

  • PDF

레일의 상하방향 불규칙성에 의한 차륜과 레일의 동 접촉력 (Dynamic Wheel/Rail Contact Force due to Rail Irregularities)

  • 이현엽
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.616-622
    • /
    • 1998
  • An analytical method has been developed to estimate the dynamic contact force between wheel and rail when trains are running on rail with vertical irregularities. In this method, the effect of Hertzian deformation at the contact point is considered as a linearized spring and the wheel is considered as an sprung mass. The rail is modelled as a discretely-supported Timoshenko beam, and the periodic structure theory was adopted to obtain the driving-point receptance. As an example, the dynamic contact force for a typical wheel/rail system was analysed by the method developed in this research and the dynamic characteristics of the system was also discussed. It is revealed that discretely-supported Timoshenko beam model should be used instead of the previously used continuously-supported model or discretelysupported Euler beam model, for the frequency range above several hundred hertz.

  • PDF

모의주행성능시험기의 차륜/레일 접촉부 CREEP FORCE에 미치는 영향 인자에 대한 연구 (Research for a factor affecting creep force at Wheel/Rail contact surface of Roller Rig)

  • 전승우;구동회;김재철;황석렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.606-612
    • /
    • 2008
  • Creep force is one of the only appeared at conventional train which used to be driven by metallic wheel and rail contact. Due to the elastic deformation of wheel/rail contact patch by the weights of wheel and all the components related to it, creep force generates and becomes to the decision factor of critical speed of bogie(or railway vehicle) which is the criteria of avoiding vehicle to be unstable. There are many kind of factors which affect generation of creep force at a wheel/rail contact surface such as viscosity of contact patch, velocity, wheel and rail geometric profile, mechanical properties of wheel and rail. This paper concentrates on a wheelset simple 2 DOF Equation of Motion being exerted. From the simple numerical analysis using linear solution about getting creep force some factors could find roughly. Among the factors geometric parameter could be the one of most important for this study. In the future we'll prolong the range of study to find out method of measuring creep force easily.

  • PDF

차륜과 레일의 접촉위치 변화에 따른 윤축의 구조해석 (Structure Analysis of Wheel Set as Variation of Contact Position between Wheel and Rail)

  • 서병욱;함영삼;홍재성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.606-610
    • /
    • 2004
  • In this paper, we would like to explain about the structure analysis of wheel set as variation of contact position between wheel and rail. Measurement of interacted force between wheel and rail is necessary for running safety evaluation as important factor of derailment mechanism. It's necessary to running safety evaluation of rolling stock. Wheel unload and lateral force change as variation of contact position between wheel and rail. Interacted force between wheel and rail got as each contact position through computer simulation. This is necessary process as first research for evaluation of derailment phenomenon and running safety.

  • PDF

차세대 고속철 해석을 위한 훨레일 모듈 개발 (The development of wheel-rail contact module for the next generation express train)

  • 윤지원;박태원;이수호;조재익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.225-230
    • /
    • 2009
  • From the view point of railway vehicle dynamics, the interaction between wheel and rail have an huge effect on the behavior of the vehicle. This phenomenon is an unique motion, only for railway vehicles. Furthermore, close investigation of the backgrounds of the interaction is the key to estimate the dynamic behavior of the vehicle, successfully. To evaluate the model including flexible bodies such as car body and catenary system of the next generation express train, it is necessary to develop proper dynamic solver including a wheel rail contact module. In this study, wheel-rail contact module is developed using the general purpose dynamic solver. First of all, the procedure for calculation of the wheel-rail contact force has been established. Generally, yaw angle of the wheelset is ignored. Sets of information are summarized as tables and splined for further uses. With this information, normal force and creep coefficient can be extracted and used for FASTSIM algorithm, which has been shown good reliability over years. Normal force and longitudinal, lateral force at the contact surface are also calculated. Those data are verified by commercial railway simulation program 'VAMPIRE'. This procedure and program can offer a basic process for estimation of the dynamic behavior and wear of the wheel-rail system, even while running on the curved rail. Finally, multi-dimensional inspection tool will be developed including the prediction of the derailment.

  • PDF

마찰과 토크를 고려한 차륜/레일 접촉 해석 (Wheel/Rail Contact Analysis with Consideration of Friction and Torque)

  • 송기석;한승희;최연선
    • 한국철도학회논문집
    • /
    • 제17권1호
    • /
    • pp.14-18
    • /
    • 2014
  • 차륜/레일 접촉은 철도차량의 동특성을 결정하는 중요한 요소이다. 본 연구에서는 철도 차륜과 레일 사이에 작용하는 토크에 의한 견인력과 마찰력을 두 원통의 접촉문제로 이론해석과 전산해석을 하고 수직하중과 전단력이 작용하는 실제 차륜과 레일에 대한 전산해석을 하였다. 철도차륜과 레일 접촉문제는 구름과 미끄러짐이 있는 탄성접촉인 크리프에 의한 크리프힘을 생성하는 과정으로서 차륜과 레일의 형상 및 마찰계수에 따라 달라짐을 알 수 있었다.

유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측 (Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM)

  • 양윤석;김관주
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

차륜/레일간의 접촉력 계산을 위한 접촉점 해석 알고리즘 (Contact Point Analysis for Wheel/Rail Contact Force Calculation)

  • 박정훈;임진수;황요하;김창호
    • 한국철도학회논문집
    • /
    • 제2권3호
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, descibed was the derived algorithm for calculating contact point between wheel and rail and the developed method for rail modeling. The proposed methods use travelling distance to represent rail center line position vector and rail orientation with respect to Newtonian reference frame. The methods call be easily used ill multibody dynamic analysis. Two numerical examples are shown to verify the validity of the proposed methods.

  • PDF

A Computational Efficient General Wheel-Rail Contact Detection Method

  • Pombo Joao;Ambrosio Jorge
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.411-421
    • /
    • 2005
  • The development and implementation of an appropriate methodology for the accurate geometric description of track models is proposed in the framework of multibody dynamics and it includes the representation of the track spatial geometry and its irregularities. The wheel and rail surfaces are parameterized to represent any wheel and rail profiles obtained from direct measurements or design requirements. A fully generic methodology to determine, online during the dynamic simulation, the coordinates of the contact points, even when the most general three dimensional motion of the wheelset with respect to the rails is proposed. This methodology is applied to study specific issues in railway dynamics such as the flange contact problem and lead and lag contact configurations. A formulation for the description of the normal contact forces, which result from the wheel-rail interaction, is also presented. The tangential creep forces and moments that develop in the wheel-rail contact area are evaluated using : Kalker linear theory ; Heuristic force method ; Polach formulation. The methodology is implemented in a general multibody code. The discussion is supported through the application of the methodology to the railway vehicle ML95, used by the Lisbon metro company.

기존철도 차륜/레일형상의 적합성 분석 (Compatibility Analysis of Wheel/Rail Profile on Conventional Railway)

  • 허현무;서정원;정흥채;구동회
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.934-939
    • /
    • 2004
  • Railway wheel/rail contact conditions have an influence on dynamic behavior of rolling stock. If there are problems of incompatibility between wheel and rail, damages like wheel wear, wheel spalling, rail wear, etc are occurred. Especially wheel and rail profiles are important factor of vehicle curving performance, so compatibility study between wheel and rail has to be carried out preferentially, In this study, we have analyzed the compatibility between wheel and rail of KNR conventional line to improve the maintenance efficiency of wheel and rail. Thus we showed the results relating to wheel/rail geometric contact, vehicle running performances as the change of wheel/rail combination.

  • PDF