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A Computational Efficient General Wheel-Rail
Contact Detection Method
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The development and implementation of an appropriate methodology for the accurate geo-
metric description of track models is proposed in the framework of multibody dynamics and it
includes the representation of the track spatial geometry and its irregularities. The wheel and rail
surfaces are parameterized to represent any wheel and rail profiles obtained from direct
measurements or design requirements. A fully generic methodology to determine, online during
the dynamic simulation, the coordinates of the contact points, even when the most general three
dimensional motion of the wheelset with respect to the rails is proposed. This methodology is
applied to study specific issues in railway dynamics such as the flange contact problem and lead
and lag contact configurations. A formulation for the description of the normal contact forces,
which result from the wheel-rail interaction, is also presented. The tangential creep forces and
moments that develop in the wheel-rail contact area are evaluated using : Kalker linear theory ;
Heuristic force method ; Polach formulation. The methodology is implemented in a general
multibody code. The discussion is supported through the application of the methodology to the

railway vehicle ML95, used by the Lisbon metro company.
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Rail-Wheel Contact

1. Introduction

In railway vehicle dynamics, the wheel-rail
interaction plays a crucial role since the railway
vehicle is guided by the forces generated by such
contact. The problems to consider when studying
the wheel-rail contact are:

(a) The contact geometry, i.e., the problem of
determining the location of the contact point
on the profiled surfaces using geometric contact
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constraints.

(b) The contact kinematics, i.e., the problem of
defining the creepages at the point of contact.

(¢) The contact mechanics, i.e., the problem of
determining the tangential creep forces and the
spin creep moment.

Several authors (Kalker, 1990 ; Polach, 1999 ;
Kik, 1996) studied the contact forces between the
wheel and the rail making available several com-
puter routines for the calculations of the tan-
gential forces at the contact point given the nor-
mal force and the relative velocities between the
contacting bodies (Kalker, 1990 ; Polach, 1999).
The problem here is reduced to provide descrip-
tions of the surfaces in contact and of the kine-
matics of the bodies.
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The track centerline geometry may be described
by different types of parametric curves such as
cubic, Akima -or shape preserving splines. The
track description adopted uses Frenet frames that
provide the appropriate referential at every point
and the definition of the cant angle variation
along the railway. A pre-processor is used to de-
fine the nominal geometry of both left and right
rails based on the interpolation of a discrete num-
ber of points, which are representative of their
space curves (Pombo, 2003a, b). For the com-
plete representation of the track geometry, both
rails are considered separate geometric entities.
For efficiency, a pre-processor generates a table
with all track position data and other quantities
required for the multibody code as function of
the left and right rail lengths. During a dynamic
simulation the program interpolates linearly both
rails databases to obtain the information necessa-
ry to find the wheel/rail interaction. The coor-
dinates of the contact points are evaluated during
the dynamic analysis by introducing surface para-
meters that describe the geometry of the rail and
wheel contact surfaces, each described by two
surface parameters (Pombo, 2003b). The metho-
dology allows the existence of two or more points
of simultaneous contact between the wheel and
the rail in the wheel tread or flange.

The normal contact forces that develop in the
wheel-rail interface are calculated using the Hertz
contact force model with hysteresis damping to
account for the dissipation of energy during con-
tact (Lankarani, 1994). The creepages, or nor-
malized relative velocities at the contact point,
are used with the normal contact force to deter-
mine the creep forces and the spin creep moment.
Three different methodologies are implemented in
order to calculate these tangential contact forces.
These are the Kalker linear theory (Kalker, 1979 ;
1990), the Heuristic nonlinear creep force mo-
del (Shen, 1983) and the Polach formulation
(Polach, 1999).

The methodologies proposed here are imple-
mented in a general multibody code that is used
for the dynamic analysis of rail-guided vehicles.
Finally, the computer code is applied to the study
of ‘a railway vehicle in what its dynamics and

stability is concerned.

2. Parameterization
of Railway Track

A pre-processor program defines the track mo-
del as two parameterized curves that represent the
nominal geometry of the left and right rails space
curves. Parametric track descriptions using differ-
ent types of splines are available (Pombo, 2003c).
The information is organized in two databases
where all quantities, necessary to define the rails
curves, are function of the arc length of each rail,
measured from their origin. The methodology is
summarized as :

(a) The geometry of the track centerline is
parameterized using a piecewise cubic interpola-
tion scheme.

(b) The track cant angle is parameterized as
function of the track length.

(c) The track centerline is also parameterized
as function of the track length (Pombo, 2003c).

(d) The track irregularities, measured experi-
mentally, are parameterized as continuum func-
tions of the track length

Input Data to Parameterize the Track
irregularities
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Fig. 1 Flowchart of the railway pre-processor
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(e) Define a set of control points that are re-
presentative of the left and right rails space
curves.

(f) Parameterize the rails space curves as a
function of the arc lengths. Account for the track
cant angle and rail inclination.

(g) Create a database for each rail, stored with
a small track length step.

A schematic representation of the methodology
used in the railway pre-processor is presented in
Figure 1. The interested reader is referred to the
work of Pombo and Ambrosio (2003a,b).

3. Wheel and Rail Surfaces

The definition of the wheel and rail needs to
satisfy three main requirements. First, the surfaces
have to be defined in a global coordinate system.
Second, the parametric equations must be able to
represent any spatial configuration of the wheel-
sets and rails. Third, the representation of any
wheel and rail profiles, obtained by measurements
or design requirements, must be possible.

Let two sets of independent surface parameters
be used to define the geometry of each of the
wheel and rail in contact be S, and u., for the
rail surface geometry, and S, and #w, for the
wheel surface, as shown in Figure 2. The position
vector of a contact point @), in the wheel or rail
body fixed coordinates systems, is function of the
surface parameters only

w=u,(s, u); [=7r, w (n

where the subscripts (.), and (.), are referred to
the rail and to the wheel respectively whereas the
subscript (.) »s are referred to the wheelset.

In order to account for any possible scenarios,
such as a variation in the gauge or relative dis-
placements and/or rotations of the rails due to the
track irregularities, it is necessary to define the
surface of each rail independently, as depicted by
Figure 3, where subscripts () and () g, are
referred to the left and right rails respectively.

Let a profile coordinate system be defined on
each rail to identify the position and orientation
of any cross section along the rail space curve and
P be a point of contact with the wheel. The right

profile coordinate system (&rr, 7gr, Cer), shown
in Figure 3, translates along a rail space curve
and rotates about its origin. The location of the
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Fig. 2 Wheel and rail surface parameters
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Fig. 3 Parametrization of the rail surface
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profile coordinate system along the space curve
can be defined in such a way that the contact
point P lies in its (7zr, &r) plane. The location
of the origin and the orientation of the right
rail profile coordinate system, defined respectively
by the vector rg, and the transformation matrix
A, are uniquely determined using the surface
parameter S, (Berzeri, 2000) . The location of the
contact point P on the rail surface is

I'Perr +ARTS;§; (2)

where s# is the position vector that defines
the location of the contact point P on the pro-
file coordinate system. The transformation matrix
A, is a function of the unit vectors that define
the moving reference frame associated to the right
rail space curve. In railway applications, the
function f, that defines the rail profile is a func-
tion of the surface parameter #, using a piece-
wise cubic interpolation scheme (De Boor, 1978).
Hence, to obtain fr(u,), the user only has to
define a set of control points that are representa-
tive of the rail profile geometry, as shown in
Figure 3.

The detection of the location of the contact
points between two parametric surfaces requires
the definition of the normal vector to the rail
surface nss at the point of contact

Nrrs = A rrNers (3)

where #rrs=1{0, COS Yrs, SIN Yars}” is the unit
vector normal to the rail surface, defined in the
profile coordinate system. This vector is obtained
through the contact angle ¥grs, shown in Figure 3.
The contact angle is

dfr (upr) ) (4)

7RTSZtg_-1< duR

The surface of revolution of each wheel is gen-
erated by a complete rotation, about the wheel
axis, of the two-dimensional curve that defines
the wheel profile (Shabana, 2001). Figure 4
shows the left wheel with arbitrary surface pro-
file assembled in a wheelset. The surface geo-
metry of the wheel is described using the two
surface parameters Sy and #%. that represent the

—] Left wheel

=
h,, o
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Fig. 4 Parametrization of the wheel surface

rotation of the wheel profile coordinate system
(Ew, Jw, Lw) with respect to the wheelset coordi-
nate system (Ews, 7Jws, Cws), and the lateral posi-
tion of the contact point in the wheel profile
coordinate system. The location of the origin and
the orientation of the wheelset frame are defined
by vector rws and matrix A s. The global position

of an arbitrary point on the wheel is
rfwrws +Aus (th +ALwS;gu> (5)

where h;,={0 1/2H 0}" is the local position
vector that defines the location of the profile coor-
dinate system with respect to the wheelset refer-
ence frame, being H the lateral distance to the
wheel profile origin. s%% and s#, are the local
position vectors that define the location of the
contact points & on the wheel surfaces with re-
spect to the profiles coordinate systems, i.e.

S/L%)Z{O ULw fw(uLw>}T (6)

To use the multibody contact model to solve the
problem of wheel-rail contact it is necessary to
devise a strategy to determine the location of the
contact points between two parametric surfaces.
This formulation requires that the parametric sur-
faces are convex. Therefore, the wheel profile is
represented by two independent functions f
and f that parameterize the wheel tread and
flange, respectively. The search for the location of
the contact points requires the definition of two
tangent vectors to the wheel surface, f,; and fu2,
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Fig. 5 Wheel profile and parametrization

at the point of contact

téwlews ALy t/Llw1§ [=t, f

(7)
tiwzzAws A t,Lle; I=t, f

[

where t%:={1 0 0}7 and ti%={0 cos 7is sin
viw }¥. The quantities with superscripts (.)* and
()7 are referred to the wheel tread and flange

respectively. The contact angle is

dfi (uiw)

dusz

rho=tg"( Jil=t.f ®

4. Wheel-rail contact model

The location of the contact points between the
wheel and the rail is complicated since both are
profiled. Furthermore, the large amount of para-
meters that include the shape of the surfaces in
contact, relative contact velocities, contact forces,
and physical properties of the materials, unavoi-
dably lead to complex theories to find the contact
forces.

4.1 Wheel-rail contact detection

Consider two generic surfaces ¢ and j depict-
ed in Figure 6 defined by the parametric func-
tions p(z, w), and q(s, ¢), respectively. The mi-
nimum distance between the two patches p (#, w)

Fig. 6 Contact points on two surfaces

and q(s, t) is given by
d=p(u, w)—q(s, t) 9

The tangent vectors t¥, t¥, t§ and t} to the para-
metric surfaces, shown in Figure 6, are defined
as:

fr— op{u, w) ,thap(u, w)

’ ou 7 ow (10)
fie oq(s, t) g oq(s, 1)
: a7 ot

The normal unit vectors to the parametric sur-
faces, are

it
It5 ti|

S 1
L

(11)

For the wheel-rail contact problem the equations
that define the candidates to contact points, re-
presented in situations Figure 7(a), (b) and (c)
11, are

(i) The surfaces normals n; and n; at the
candidates to contact points have to be parallel :

n! t¥=0

n; t¥=0 (12

n; an=0 = {

(ii) The vector d has to be parallel to the
normal vector n;:

d” t¥=0

d><n,~=0<=>{dT £ =0 (13)
(iii) The contact condition specifies that :
d” n;<0 (14)
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Fig. 7

The geometric conditions in equations (12)
and (13) are four nonlinear equations with four
unknowns, which are the surfaces parameters u,
w, s and f. In the computational implementa-
tion, the information of a previous time step is
used as initial estimate for the solution search of
the equations.

4.2 The two point contact scenario

More than one pair of contact points can de-
velop between the wheel and the rail wheel, as
shown in Figure 8. Let two different functions £+
and f parameterize, the wheel tread and flange,
respectively, as shown in Figure 5. The formu-
lation used to look for the candidates to contact
points is fully independent for the wheel tread
and for the wheel flange surfaces.

This methodology allows finding multiple
wheel-rail contact points locations and to study
the lead and lag contact configurations. Since the
methodology used to look for candidates to con-
tact points is fully independent for the wheel tread
and for the wheel flange, the contact point in the
flange does not have to be located in the same
plane as the contact point in the wheel tread, as
shown in Figure 8. This allows the analysis of
derailment or of the effect of switches.

4.3 Normal contact forces in the wheel-rail
The normal contact forces are calculated using
the contact force model proposed by Lankarani

Flange contact
(Lead contact)

Tread
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contact i
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Fig. 8 Lead and lag contact in wheel-rail

and Nikravesh (1995), which requires the amount
of penetration, the relative velocity between the
contact point and the material properties of the
wheel and rail. The direction of the normal forces
is determined from the wheel and rail profile data.
The evaluation of the normal contact force is

5 .

N=K(1+3<1—4Q—8{%)8” (15)
where ¢ is the indentation, #=1.5 is the para-
meter used for metal to metal contact, K is the
Hertzian constant that depends on the surface
curvatures and the elastic properties of contacting
bodies, & is the coefficient of restitution, 8 is
the velocity of indentation and is the velocity of
indentation at the initial instant of contact, both
evaluated as the projection of the relative velocity
vector of the point of contact on the vector nor-
mal to the contact surfaces.

4.4 Tangential contact forces

Knowing the normal contact forces that devel-
op between the wheel and rail and the creepages,
i.e., the relative velocities, it is possible to calcu-
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late the tangential contact forces using one of the
models available in the literature. Three models
are presented here in order to allow for a com-
parative study between them to be developed.

The Kalker Linear evaluates the longitudinal
F¢ and lateral F;, components of the creep force
and the spin creep moment My, that develop in
the wheel-rail contact region as

F cu 0 0 Ve
F, t =Gab| 0 e Jab cu|iva g (16)

M, 0 —Jab ¢ abcs ¢

where G is the combined shear modulus of rigi-
dity of wheel and rail materials and a and b are
the semi-axes of the contact ellipse. The para-
meters ¢;; are the Kalker creepage and spin co-
efficients, obtained in references (Kalker, 1990 ;
Garg, 1984). The quantities vs, vy and ¢ repre-
sent the longitudinal, lateral and spin creepages
at the contact point, respectively. For sufficiently
small values of creep and spin, the linear theory of
Kalker is adequate to determine the creep forces.
For larger values, this formulation is no more
appropriated since it does not include the satura-
tion effect of the friction forces, i.e., it does not
assure that F,<uN.

The Heuristic Nonlinear Force Model involves
calculating the creep force expected from the
Kalker linear theory and modifying it by a factor
that takes into account the limiting creep force
(Shen, 1983). First, the resultant creep force of
Kalker linear theory is calculated

Fi=JFZ+F7 (17)

where the notation (.)” now means that the quan-
tities are obtained with the Kalker’s linear theory.
The limiting resultant creep force is determined
by :

)G ]| omen )
1 if Fy >3uN

Fv:/lN

where u is the friction coefficient. The new re-
sultant creep force Fy is used to calculate the
tangential forces as:

= FU
F

Ey p (19)

s
v

Fe Fi; Fy=

In the Heuristic method the spin creep moment
M, is neglected. This theory gives more realistic
values for creep forces outside the linear range
than the Kalker’s linear theory. For high values of
spin, the Heuristic theory can lead to unsatisfac-
tory results (Andersson, 1998).

In the Polach Nonlinear Force Model the
longitudinal and lateral components of the creep
force are (Polach, 1999)

FezF%f; Fv:F%Z‘f'Fr/s% . (20)
where F is the tangential contact force caused
by longitudinal and lateral creepages, v¢ is the
modified translational creepage, which accounts
the effect of spin creepage, and Fys is the lateral
tangential force caused by spin creepage. The
Polach algorithm takes, as input, the creepages
Ve, Uy and ¢, the normal contact force N, the
semi-axes g and b of the contact ellipse, the
combined modulus of rigidity of wheel and rail
materials G, the friction coefficient g and the
Kalker creepage and spin coefficients ¢;. The
Polach algorithm is suitable to study the tan-
gential contact forces that develop in the wheel
-rail interface. This method allows the calcula-
tion of full nonlinear creep forces and takes spin
into account.

5. Application to a Railway Vehicle

The ML9S trainset, shown in Figure 9, is used
by the Lisbon metro company (ML). The ML95

Fig. 9 The ML95 trainset
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trainset is an electrical three-car unit composed
of two powered end vehicles with driving cabs,
and a intermediate vehicle, represented in Figure
10.

Each MLY5 trailer vehicle is composed of one
carbody where the passengers travel, supported
by two bogies through the secondary suspension,
which is set to minimize the vibrations induced
by the track on the passenger compartment. The
bogies are the subsystems that, through the wheel-
sets, are in contact with the track and include
the primary suspension, which is the main res-
ponsible for the steering capabilities and stability
behavior.

Each trailer bogie of the ML95 consists of one
frame, two wheelsets, four axleboxes and the
mechanical elements that compose the primary
suspension. The bogie frame is supported by the
axleboxes through eight metal-rubber springs of
the “Chevron” type. The vertical displacements of
the primary suspension are limited by bumpstops
and liftstops, shown in Figure 11.

Trailer
Fig. 10 Schematic representation of the ML95

Bogi (SN s e e L x5
ogie e e — Wheelset
frame < At i

Axlebox
Bumpstop

“Chevron”

Liftstop springs

o

Bogie frame Vertical damper .

Fig. 12 Secondary suspension of the trailer bogie
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The trailer vehicle carbody is supported by four
airsprings, and with each one there is a vertical
“Chevron” bumpstop assembled in series. In par-
allel with the airsprings, four vertical hydraulic
dampers and four vertical liftstops devices, shown
in Figure 12, are mounted. The connection be-
tween the carbody and each bogie is done by a
shaft, which guarantees an appropriate and stable
rotation of the bogie with respect to the carbody.
The mechanical elements that assure the connec-
tion between each bogie and the carbody are
mounted between a center plate and the bogie
frame, as shown in Figure 13.

The transmission of traction and braking ef-
forts between each bogie and the carbody is done
by traction rods. The lateral stabilization of the
carbody needs two transversal hydraulic dampers,
between the center plate and bogie frame. The
characteristics of the ML95 trainset are shown in
Table 1.

The model of the railway vehicle leads to rep-
resentation of the multibody model shown in
Figure 14. The mass and inertia properties of
system components have been supplied by the
manufacturer company. For bodies with no data

Table 1 Main characteristics of the ML95 vehicle

Traffic velocity range 40—60 Km/h
Minimum curve radius on track 60 m
Track gauge 1.435m
Wheel rolling radius new 0.43m
Bogie wheelbase 2.1m
Bogie center distance 1.1 m
Wheelset weight 1109 Kg
Bogie weight 4200 Kg
Weight of the carbody 11160 Kg
Floor height 1.155m
Vehicle height 3523 m
Vehicle width 2789 m
Vehicle length 15.30 m

Bogie
frame]

Transversali
damper

&
Transversal |
bumpstop

Fig. 13 Bogie-carbody connection of the vehicle
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available, the mass and inertia properties are
estimated based on their geometry. The location
and type of kinematic joints is also obtained with
the manufacturers information.

The first simulation scenario used to apply the
methodology developed corresponds to a straight
track with no irregularities in which a vehicle
with new wheels runs. The starting position of
the vehicle is such that the model is misaligned
by 2 mm relative from the track centerline. The
results of the simulation, for several velocities, are
represented by the lateral displacements of the
wheelsets presented in Figure 15. In all cases the
Polach formulation has been used to calculate the
creep forces.

It is observed that for vehicle forward veloci-
ties under 60 m/s the wheelset undergoes lateral
decaying oscillations and returns to the center of
the track. This indicates a stable running of the

] Carbody (Rigid body) [
]

OSLZ?E
QOO

AT BoGie !
i econdary
Suspension

Rear Bogie Frame
(Rigid body)

Primary Primary
Suspension Suspension

Rear Axieboxes Front Axieboxes
(Rigid body) (Rigid Body)
Revolute Revolute
joints joints

Rear Wheelset Front Wh
(Rigid body) (Rigid body)

| I 11 1
{ 1 i’ L

Fig. 14 Vehicle multibody model
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Fig. 15 Lateral displacement of the front wheelset

vehicle. At sufficiently high speeds, 70 m/s for
instance, the lateral oscillations increase and the
vehicle derails. By running the vehicle at interme-
diate speeds it is observed that the critical speed
of the vehicle is 60.5 m/s.

To appraise the difference between the different
force models, several vehicle simulations are done
for a velocity of 50 m/s. The results for the verti-
cal and lateral wheel forces are represented in
Figures 16 and 17, respectively. It is observed that
for all creep models the results obtained are
similar. This is expected results since there are no
high creepages at the speeds considered.

To evaluate the performance of different creep
models the vehicle is simulated, for velocities of
10 and 20 m/s, in a scenario where the track has
a curved geometry, as shown in Figure 18. The
dashed lines represent transition segments with
50 m. For both simulation velocities the contact
forces obtained with Kalker linear theory lead to
the lift of the outer wheel of the front wheelset, as
shown in Figure 19. Derailment does not occur

24150

Latt Wheel (Kalker)
...... Left Wnesl (Heuristic)
e Lttt Wheal {Polachy

24100 |-

24050

24000

23330

23000 |

Vertical Wheel Farce (4]

Tima(s)
Fig. 16 Vertical forces on one wheel for a vehicle
velocity of 50 m/s for the three creep models
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e Bight Wheel (Polach)

Lateral Wheet Force (N)
o

Time [s}
Fig. 17 Lateral forces on one wheel for a vehicle
velocity of 50 m/s for the three creep models
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\ R =200m

Lifting of the right front wheel when using
the Kalker linear theory

due to the flange contact. Since high creepages are
involved the Kalker linear theory is inappropriate
to compute the creep forces. It is suggested that
for cases that involve curved tracks or running
speeds closer to the critical speeds the Heuristic or
the Polach creep force models should-be selected.
Based on results not shown in this paper, due to
space restrictions, it can be shown that the Polach
nonlinear force model is superior, and more
efficient from the computational point of view,
than the other two force models considered.

Another aspect worth checking concerns the
different parametrization schemes for the rail
curves. All results of the contact force models are
dependent on their geometric correctness. Two
cubic parameterization schemes are tested : Cu-
bic Splines, which is probably the most popular
interpolation scheme used; Shape Preserving
Splines, which maintain the curvature of the seg-
ments faithful to that of the original data. Several
simulations of the vehicle are carried for the
curved track parameterized with the two types of
splines. In all simulations only the Polach force
model is used. Selected results for the vertical and
lateral forces in the wheel are presented in Figures
20 and 21.

In Figure 20 it can be observed that the Cubic
splines lead to a response that contains very
pronounced peaks for times close to 14 and 19

i Left wheel - Cubic Sptines Track
25000 1 Right whee! - Cubic Splines Track - -

+e-vo+ Left wheel - Shape Preserv Track

Lateral Whee! Force ]

5000

10000

Time[s]
Fig. 20 Lateral contact forces on the leading wheel-
set for a forward velocity of 10 m/s
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e Left wheet - s?’}??ff???'f’ Track  ——- Rignt wheel - Sf\ape Preserv Track

34600

29000

24000 prreas

Verticat Whegi Foree [N}

19060

14000
Time fs}
Fig. 21 Vertical contact forces on the leading wheel-

set for a forward velocity of 10 m/s

sec. These type of peaks are always present in

interpolations involving cubic splines and lead
to a perception of the system response associated
with high perturbations. However, these pertur-
bations have no physical content and, therefore,
the interpolation of curved tracks based on cubic
splines can be misleading. These type of peaks
are not present when the track is obtained with
the shape preserving splines interpolation. Note
also that the vertical wheel forces obtained for
tracks interpolated by these two schemes exhi-
bits the same isolated high peaks that lead to the
same conclusions. These problems are not ob-
served with tangent tracks because all interpola-
ting splines lead to similar curves.

6. Conclusion

A new methodology was proposed to identify
the contact points between the wheel and the
rail. This procedure allows that two simultaneous
contact points to be identified, allowing to study
track switches and problems involving derail-
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ment. The application of the procedures to the
simulation of a railway vehicle in different scena-
rios made it possible to identify its critical veloci-
ty and to evaluate the virtues and drawbacks of
different track interpolation schemes and creep
force models. The results show that the use of
cubic splines for the rails and wheels leads to
spurious oscillations on the contact forces. It is
concluded that shape preserving splines is the
most advantageous cubic polynomial interpola-
tion process. Among the three creep force models
tested it was shown that the Polach nonlinear
force model is the only one that is suitable for
all simulations carried. The Kalker linear force
model fails when the tangential forces reach their
saturation level. The Heuristic model leads to less
accurate results for flange contact, when there are
high creepages involved.
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