• Title/Summary/Keyword: wheel tracking test

Search Result 93, Processing Time 0.023 seconds

Development of a Spray-Injection Patching System and a Field Performance Evaluation of 100% RAP Asphalt Mixtures using a Rapid-Setting Polymer-Modified Asphalt Emulsion (아스팔트 긴급보수용 스프레이 패칭 장비 개발 및 현장 적용성 평가)

  • Han, Soo Hyun;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.77-85
    • /
    • 2018
  • PURPOSES : The purpose of this study was to develop an urgent road-repair system and perform a field applicability test, as well as discover the optimum mix design for machine applications compared to the optimum mix design for lab applications. METHODS : According to reviews of the patent and developed equipment, self-propelled and mix-in-place equipment types are suitable for urgent pavement repair, e.g., potholes and cracks. The machine-application mix design was revised based on the optimum lab-test mix design, and the field application of a spray-injection system was performed on the job site. The mixture from the machine application and lab application was subjected to a wet-track abrasion test and a wheel-tracking test to calibrate the machine application. RESULTS and CONCLUSIONS : This study showed that the binder content could differ for the lab application and the machine application in the same setting. Based on the wet-track abrasion test result, the binder contents of the machine application exceeded the binder contents of the lab application by 1-1.5% on the same setting value. Moreover, the maximum dynamic stability value for the machine application showed 1% lower binder contents than the maximum lab-application value. Collectively, the results of the two different tests showed that the different sizes and operating methods of the machine and lab applications could affect the mix designs. Further studies will be performed to verify the bonding strength and monitor the field application.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

Evaluation of Rutting Behavior of Hot Mix Asphalt using Slag and Waste Foundry Sand as Asphalt Paving Materials (슬래그와 폐주물사를 이용한 아스팔트 혼합물의 소성변형특성에 관한 연구)

  • Lee, Kwan-Ho;Cho, Jae-Yoon;Jeon, Joo-Yong
    • 한국도로학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.89-92
    • /
    • 2002
  • The objective of this research is to evaluate engineering properties of recycled aggregates, slag as coarse & fine aggregate and waste foundry sand(WFS) as fine aggregate, in hot mix asphalt(HMA). In this research, soundness, gradation and particle analysis, abrasion, specific gravity and absorption test were carried out. The optimum asphalt binder content(OAC) for various HMA combinations of recycled aggregate was determined by Marshall Mix Design. The ranges determined is between 7.2% and 7.5%. Indirect tensile test, resilient modulus test, creep test were carried out for characterization of rutting behavior of various combination of HMA. Judging from the limited tests, the HMA with recycled aggregates is not as good rutting resistance as the HMA with common aggregates. After finishing the Wheel tracking test, the application or feasibility for the use of recycled aggregate as asphalt paving material will be determined.

  • PDF

Evaluation on Patching Materials for Asphalt Pavement (아스팔트 포장도로의 응급보수재료 평가에 관한 연구)

  • Shim, Jae-Pill;Jin, Jung-Hoon;Park, Tea-Soon;Lee, Jae-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.59-67
    • /
    • 2012
  • This study presents the evaluation of the patching materials that are used to repair the distress of asphalt pavement. Four kinds of patching materials currently used in practice were tested in both laboratory and field. The laboratory tests included the dry and soaked Marshall stability test, indirect tensile test, wheel tracking test and adhesive strength between the asphalt pavement and the repairing material was tested as a performance test. The field study was conducted using the slab samples placed on the location of vehicle tire passing and the performance of the repairing materials were investigated as passing the traffic load. The result of the laboratory tests were satisfied with the current design criteria and material standard except for water-immersion stability. Type C patching material showed the highest adhesive shear strength among the patching materials tested. However, the mature distress, such as rutting and stripping were monitored after construction in 10 days. It was found that performance of patching material is lack of quality behavior when they were applied in the field and required to develop and applu to prevent the mature distress of the current patching materials.

Laboratory Evaluation of the Properties of Sulfur Modified Asphalt Mixtures (황이 첨가된 개질 아스팔트 혼합물의 실내 물성 평가)

  • Yang Sung-Lin;Kim Boo-Il;Kim Nam-Ho;Rhee Suk-Keun
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.163-172
    • /
    • 2006
  • This study evaluated the laboratory properties of asphalt binder and mixture modified with SPC(Sulfur Polymer Cement), which consists of sulfur as a main ingredient that is an industrial by-product made from refining process of crude oil and carbon-black as an additive. Four levels of SPC modifier ratios(0, 10, 30, 50%) were evaluated in the laboratory. Superpave(Superior Performing Asphalt Pavements) system was used to determine the PG(Performance Grade) and evaluate the property of SPC modified binder at the different temperatures. IDT(Indirect Tensile Test) was performed to evaluate the resistance of fatigue and low-temperature cracking at $10^{\circ}C\;and\;-10^{\circ}C$. Wheel-tracking test was also performed to evaluate the rutting-resistance of SPC modified asphalt mixtures. Test results showed that the more SPC modifier ratios, the better rutting-resistance and the more potential of low-temperature cracking resistance. However, SPC modifier did not show the effect on the fatigue cracking resistance.

  • PDF

A Development of Recycled Glass Powder using Asphalt Concrete Filler and Evaluation of Practical Use at the Field (아스콘 채움재용 폐유리 미분말 개발 및 현장 적용 평가)

  • Ryu, Deug-Hyun;Jeon, Jun-Young;Jo, Shin-Haeng;Jun, Soon-Je
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.113-116
    • /
    • 2007
  • This is a research for evaluated recycled glass powder to add asphalt concrete filler. To make a comparative study, Mechanical performance of lime stone and slag dust Mixtures was evaluated according to test procedure. Lab. performance tests included marshall stability, indirect tensile strength, resilient modulus and wheel tracking. Water resistance tests were evaluated by marshall strength ratio and tensile strength ratio. In conclusion, Results of mechanical performance showed that recycled glass powder mixtures were equivalent to conventional mixtures. Especially, result of tensile strength ratio tested recycled glass powder mixtures was superior to conventional mixtures.

  • PDF

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF

Binder Stiffness Effect on Permanent Deformation and Tensile Strength of Asphalt Concretes (바인더 강성이 아스팔트 콘크리트의 인장강도와 소성변형 특성에 미치는 영향 분석)

  • Kim, Hyun-Hwan;Yoo, Min-Yong;Kim, Jin-Chul;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • Since the relatively stiff binder shows a higher tensile strength as well as higher rutting resistance, it is believed that the binder stiffness is an important factor for rutting and tensile strength of asphalt mixtures. The typical tensile property is measured by indirect tensile strength (ITS) test at $25^{\circ}C$ and the rutting resistance is most widely measured by wheel tracking (WT) test at $60^{\circ}C$. The deformation strength ($S_D$) is newly developed property to estimate rut resistance of asphalt concretes at $60^{\circ}C$. The ITS and $S_D$ are very simple to measure by static test techniques, but the WT is measured by repeated loading procedure which requires relatively longer time and more efforts. Since these three properties are highly dependent upon the binder stiffness, it may be possible to estimate one property from another. Therefore, this study investigate the possibility of estimating the rutting characteristics (measured by WT test) by ITS or $S_D$ test, and the ITS by $S_D$. Because of binder stiffness effect, in the WT estimation by ITS, a tendency was observed for the higher ITS mixture to have the lower rut depth, giving $R^2{\fallingdotseq}$0.6, on the average. The ITS estimation by $S_D$ showed $R^2{\fallingdotseq}$0.64, and the WT estimation by SD showed $R^2{\fallingdotseq}$0.84, which is highest correlation among the three. Therefore, it was concluded that there is relatively good possibility of estimating WT result by $S_D$, and even though $R^2$ is somewhat low, there is some correlation between WT and ITS.

Development of High Viscous Modified Asphalt Binder for Porous Asphalt Pavement (배수성 포장용 고점도 개질 아스팔트 바인더 개발)

  • Kim, Hyeong-Seok;Lee, Hyun-Jong;Lee, Kwang-Ho;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • This paper describes the results of laboratory and field performance tests on the polymer modified asphalt binder and mixtures developed in this study for porous asphalt pavements. Various physical and mechanical laboratory tests including DSR and BBR tests are performed for two types of modified binders, and one type of binder is selected based on the binder testing results. Mix designs are conducted for the selected asphalt binder and a Japanese modified binder, respectively. Various performance tests including fatigue tests, wheel tracking tests, and moisture susceptibility tests are conducted for the domestic and Japanese porous asphalt mixtures. Test results indicate that the overall performance characteristics of the domestic mixture are similar to or better than those of the Japanese mixture. Based on the laboratory testing results, the domestic porous mixture is applied to a field test section. Periodic field investigations are conducted to evaluate the changes in noise level and air voids with time. The road noise analysis shows that the noise levels of the porous pavement keep increasing and, after two years, are similar to those of SMA pavements.