• Title/Summary/Keyword: wetting process

Search Result 204, Processing Time 0.03 seconds

Effect of Cyclic Drying-Wetting on Compressive Strength of Decomposed Granite Soils (습윤-건조 반복작용으로 인한 화강풍화토의 압축강도 특성 변화 연구)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This paper presents the results of an investigation into the effect of cyclic wetting-drying on the compressive strength characteristics of decomposed granite soils. A series of plane strain compression (PSC) tests were performed on test specimens with varying fine contents under different wetting-drying cycles to investigate the change in compressive strength under the process of wetting-drying cycles. The effect of wetting-drying cycles on the structural particle rearrangement at a micro-scale level was also examined using scanning electron microscope (SEM) tests. It was shown that the soil containing larger fines showed more significant decrease in compressive strength compared with the soils with less fines. Also found was that the wetting-drying cycle did not have significant effect on the particle arrangement.

Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique (Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작)

  • Park, Ji-Young;Gratton, Stephanie;Benjamin, Maynor;Lim, Jomg Sung;Desimone, Joseph
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.493-499
    • /
    • 2007
  • Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process (세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체)

  • Hwang, Yongseon;Kim, Jooheon;Cho, WonChul
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.782-786
    • /
    • 2014
  • Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

Characterizations of the Mechanical Properties and Wear Behavior of Ni Plate Fabricated by the Electroforming Process (Electroforming을 이용하여 제조한 Ni 기판의 기계적 특성 및 내마모 거동 분석)

  • Lee, Seung-Yi;Jang, Seok-Hern;Lee, Chang-Min;Choi, Jun-Hyuk;Joo, Jin-Ho;Lim, Jun-Hyung;Jung, Seung-Boo;Song, Keun
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.538-543
    • /
    • 2007
  • We fabricated the Ni plate by electroforming process and evaluated the microstructure, mechanical properties and wear behavior of the Ni plate. Specifically, the effects of addition of wetting agents, SF 1 and SF 2 solutions, on the microstructure and properties were investigated. The microstructure and surface morphology were characterized by transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively, and friction coefficient was measured by the ball-on-disk method. We found that the microstructure and mechanical properties of Ni plate were changed with kind and amount of wetting agents used. The hardness and tensile strength of Ni plate formed without wetting agents was 228 Hv and 660.7 MPa, respectively, whiled when wetting agent was added, those were improved to be 739 Hv and 1286.3 MPa. These improvements were probably due to the finer grain size and less crystallization of Ni. In addition, when both wetting agents were added, the friction coefficient was reduced from 0.73 to 0.67 which is partially caused by the improved hardness and smooth surface.

Landslide Analysis Using the Wetting-Drying Process-Based Soil-Water Characteristic Curve and Field Monitoring Data (현장 함수비 모니터링과 습윤-건조 함수특성곡선을 이용한 산사태 취약성 분석)

  • Lee, Seong-Cheol;Hong, Moon-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.13-26
    • /
    • 2023
  • This study examined the soil-water characteristic curve (SWCC), considering the volume change, using wetting curves on the field monitoring data of a wireless sensor network. Special attention was given to evaluating the landslide vulnerability by deriving a matric suction suitable for the actual site during the wetting process. Laboratory drying SWCC and shrinkage laboratory tests were used to perform the combined analysis of landslide and debris flow. The results showed that the safety factor of the wetting curve, considering the volume change of soil, was lower than that of the drying curve. As a result of numerical analyses of the debris flow simulation, more debris flow occurred in the wetting curve than in the drying curve. It was also found that the landslide analysis with the drying curve tends to overestimate the actual safety factor with the in situ wetting curve. Finally, it is confirmed that calculating the matric suction through SWCC considering the volume change is more appropriate and reasonable for the field landslide analysis.

Soil Water Characteristic Curve of the Weathered Granite Soil through Simulated Rainfall System and SWCC Cell Test (강우재현 모형실험과 SWCC Cell 실험에 의한 화강암질 풍화토의 함수특성곡선)

  • Ki, Wan-Seo;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.523-535
    • /
    • 2008
  • A simulated rainfall system was built, and the unsaturated characteristics were examined by execution of simulated rainfall system test and soil water characteristic curve cell test(SWCC Cell Test) under the various rainfall and slope conditions. With the results, the applicability of infiltration behavior under rainfall and soil water characteristic curve models to the unsaturated weathered granite soil was examined. At the results of comparison the volumetric water content and matric suction measured in the wetting process(under rainfall) with those in the drying process(leaving as it was) of the simulated rainfall system, the volumetric water content showed a difference of $2{\sim}5%$ and matric suction of about $3{\sim}10\;kPa$, indicating the occurrence of hysteresis. In addition, the difference was relatively larger in matric suction than in the volumetric water content, and this tells that the hysteresis behavior is larger in matric suction. When the soil water characteristic curve derived from measurements in simulated rainfall system test were compared with those from the soil water characteristic curve cell test, both methods produced soil water characteristic curves close each other in the wetting process and the drying process, but in both, there was a difference between results obtained from in the wetting process and those from in the drying process. Thus, when soil water characteristic curves are rationally applied to the design and stability analysis considering of the properties of unsaturated soil, it is considered desirable to apply the soil water characteristic curve of the wetting process to the wetting process, and that of the drying process to the drying process.

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process (실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가)

  • Kim, Seung-Jun;Kong, Jeong-Ho;Lee, Dongyun;Kim, Jong-Man
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.591-597
    • /
    • 2012
  • This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.

Visualization Study on Microscale Wetting Dynamics of Water Droplets on Dry and Wet Hydrophilic Membranes

  • Park, Kyungjin;Kim, Seong Yeon;Hong, Jiwoo;Kim, Jong Hyun;Lim, Geunbae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.277-281
    • /
    • 2022
  • The wetting dynamics of water droplets dispensed on the surface of dry and wet hydrophilic membranes were investigated experimentally from a microscale point of view. By using a high-speed, white-beam x-ray microimaging (WXMI) synchrotron, consecutive images displaying the dynamic motions of the droplets were acquired. Through analyzing the characteristics observed, it was found that the dry hydrophilic membrane showed local hydrophobicity at a certain point during the absorption process with apparent contact angles greater than 90. While on the other hand, the apparent contact angles of a water droplet absorbing into the wet membrane remained less than 90 and showed total hydrophilicity. The observations and interpretation of characteristics that affect the contact, wetting, recoiling, and dynamic behaviors of droplets are significant for controlling liquid droplet impingement in a desired manner.

Hysteresis of the Suction Stress in Unsaturated Weathered Mudstone Soils (불포화 이암풍화토에서의 흡입응력 이력현상)

  • Song, Young-Suk;Choi, Jin-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.55-66
    • /
    • 2012
  • To investigate the hysteresis of the suction stress in unsaturated weathered mudstone soils (CL), matric suction and volumetric water content were measured in both drying and wetting processes using Automated Soil-Water Characteristics Curve Apparatus. The drying and wetting processes in unsaturated soils were reproduced in the test; the drying process means to load matric suction to spill pore water from the soils, and the wetting process means to unload matric suction to inject pore water into the soils. Based on the measured result, Soil Water Characteristic Curve(SWCC)s were estimated by van Genuchten model (1980). SWCCs have nonlinear relationship between effective degree of saturation and matric suction. The hysteresis in SWCCs between drying and wetting processes occurred. As a result of estimating Suction Stress Characteristic Curve(SSCC) using Lu and Likos model (2006), the suction stress rapidly increased in the low level of matric suction and then increased slightly. Also, the hysteresis in SSCCs between drying and wetting processes occurred. In order to design geo-structures and check its stability considering unsaturated soil mechanics, therefore, it is more reasonable that the SSCC of drying process should be applied in the condition of rainfall infiltration and the SSCC of wetting process in the condition of evaporation or drainage.