DOI QR코드

DOI QR Code

Fabrication and Characterization of Superhydrophobic Glass Surfaces Using Silicon Micro-mold and Thermal-reflow Process

실리콘 마이크로 몰드와 유리의 열-재흐름 현상을 이용한 초소수성 유리 표면 제작 및 젖음 특성 평가

  • Kim, Seung-Jun (Dept. of Nano Fusion Technology, Pusan National University) ;
  • Kong, Jeong-Ho (Dept. of Nano Fusion Technology, Pusan National University) ;
  • Lee, Dongyun (Dept. of Nano Fusion Technology, Pusan National University) ;
  • Kim, Jong-Man (Dept. of Nano Fusion Technology, Pusan National University)
  • 김승준 (부산대학교 나노융합기술학과) ;
  • 공정호 (부산대학교 나노융합기술학과) ;
  • 이동윤 (부산대학교 나노융합기술학과) ;
  • 김종만 (부산대학교 나노융합기술학과)
  • Received : 2012.04.03
  • Published : 2012.08.25

Abstract

This paper presents regularly micro-textured glass surfaces ensuring the superhydrophobic properties in the Cassie-Baxter regime. The proposed surfaces were fabricated simply and efficiently by filling the glass material into a silicon micro-mold with periodic micro-cavities based on a thermal-reflow process, resulting in a successful demonstration of the textured glass surface with periodically-arrayed micro-pillar structures. The static and dynamic wetting properties of the micro-textured glass surfaces were characterized by measuring the static contact angle (SCA) and contact angle hysteresis (CAH), respectively. In addition, the surface wettability was estimated theoretically based on Wenzel and Cassie-Baxter wetting theories, and compared with the experimental ones. Through the experimental and theoretical observations, it was clearly confirmed that the proposed micro-textured glass surfaces showed the slippery superhydrophobic behaviors in the Cassie-Baxter wetting mode.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. L. D. Stefano, K. Malecki, A. M. Rossi, L. Rotiroti, F. E. D. Corte, L. Moretti, and I. Rendina, Sens. Act. B 114, 625 (2006). https://doi.org/10.1016/j.snb.2005.05.027
  2. T. Seki, Y. Uno, K. Narise, T. Masuda, K. Inoue, S. Sato, F. Sato, K. Imanaka, and S. Sugiyama, Sens. Act. A 132, 683 (2006). https://doi.org/10.1016/j.sna.2006.02.016
  3. J. M. Kim, S. Lee, J. H. Park, C. W. Baek, Y. Kwon, and Y. K. Kim, J. Micromech. Microeng. 20, 095007 (2010). https://doi.org/10.1088/0960-1317/20/9/095007
  4. B. Lee, S. Seok, and K. Chun, J. Micromech. Microeng. 13, 663 (2003). https://doi.org/10.1088/0960-1317/13/5/318
  5. M. C. Lee, S. J. Kang, K. D. Jung, S. H. Choa, and Y. C. Cho, J. Micromech. Microeng. 15, 2003 (2005). https://doi.org/10.1088/0960-1317/15/11/003
  6. H. Yu, G. Zhou, and F. S. Chau, Sens. Act. A 143, 462 (2008). https://doi.org/10.1016/j.sna.2007.11.009
  7. A. G. Pawlowski, A. Sayah, and M. A. M. Gijs, J. Micromech. Microeng. 15, 560 (2005).
  8. H. S. Jang, M. W. Cho, and D. S. Park, Sensors 8, 700 (2008). https://doi.org/10.3390/s8020700
  9. E. Belloy, A. Sayah, and M. A. M. Gijs, Sens. Act. A 92, 358 (2001). https://doi.org/10.1016/S0924-4247(01)00572-6
  10. D. C. S. Bien, P. V. Rainey, S. J. N. Mitchell, and H. S. Gamble, J. Micromech. Microeng. 13, 534 (2003).
  11. F. E. H. Tay, C. Iliescu, J. Jing, and J. Miao, Microsyst. Technol. 12, 935 (2006). https://doi.org/10.1007/s00542-006-0116-0
  12. C. Iliescu, F. E. H. Tay, and J. Miao, Sens. Act. A 133, 395 (2007). https://doi.org/10.1016/j.sna.2006.06.044
  13. X. Li, T. Abe, Y. Liu, and M. Esashi, J. Microelectromech. Syst., 11, 625 (2002). https://doi.org/10.1109/JMEMS.2002.805211
  14. J. H. Park, N. E. Lee, J. Lee, J. S. Park, and H. D. Park, Microelectron. Eng. 82, 119 (2005). https://doi.org/10.1016/j.mee.2005.07.006
  15. A. Baram, and M. Naftali, J. Micromech. Microeng. 16, 2287 (2006). https://doi.org/10.1088/0960-1317/16/11/006
  16. M. S. Giridhar, K. Seong, A. Schlzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, Appl. Optics 43, 4584 (2004). https://doi.org/10.1364/AO.43.004584
  17. S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, Thin Solid Films 477, 216 (2005). https://doi.org/10.1016/j.tsf.2004.08.136
  18. R. An, J. D. Uram, E. C. Yusko, K. Ke, M. Mayer, and A. J. Hunt, Opt. Lett. 33, 1153 (2008). https://doi.org/10.1364/OL.33.001153
  19. S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, J. Opt. A: Pure Appl. Opt. 10, 044033 (2008).
  20. D. Nieto, J. Arines, C. Comez-Reino, G. M. O'Connor, and M. T. Flores-Arias, J. Appl. Phys. 110, 023108 (2011). https://doi.org/10.1063/1.3609085
  21. J. Liu, J. Shang, J. Tang, and Q. A. Huang, J. Microelectromech. Syst. 20, 909 (2011). https://doi.org/10.1109/JMEMS.2011.2160043
  22. C. W. Lin, C. P. Hsu, H. A. Yang, W. C. Wang, and W. Fang, J. Micromech. Microeng. 18, 025018 (2008). https://doi.org/10.1088/0960-1317/18/2/025018
  23. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936). https://doi.org/10.1021/ie50320a024
  24. A. B. D. Cassie, and S. Baxter, Trans. Faraday. Soc. 10, 546 (1944).
  25. D. H. Kim, Y. Kim, B. M. Kim, J. S. Ko, C. R. Cho, and J. M. Kim, J. Micromech. Microeng. 21, 045003 (2011). https://doi.org/10.1088/0960-1317/21/4/045003
  26. C. Choi, Y. Yoon, D. Hong, K. S. Brammer, K. Noh, Y, Oh, S. Oh, F. E. Talke, and S. Jin, Electron. Mater. Lett. 6, 59 (2010).