• Title/Summary/Keyword: wet-plasma

Search Result 185, Processing Time 0.024 seconds

Direct Bonding Characteristics of 2" 3C-SiC Wafers for Harsh Environment MEMS Applications (극한 환경 MEMS용 2" 3C-SiC기판의 직접접합 특성)

  • 정귀상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.700-704
    • /
    • 2003
  • This paper describes on characteristics of 2" 3C-SiC wafer bonding using PECVD (plasma enhanced chemical vapor deposition) oxide and HF (hydrofluoride acid) for SiCOI (SiC-on-Insulator) structures and MEMS (micro-electro-mechanical system) applications. In this work, insulator layers were formed on a heteroepitaxial 3C-SiC film grown on a Si (001) wafer by thermal wet oxidation and PECVD process, successively. The pre-bonding of two polished PECVD oxide layers made the surface activation in HF and bonded under applied pressure. The bonding characteristics were evaluated by the effect of HF concentration used in the surface treatment on the roughness of the oxide and pre-bonding strength. Hydrophilic character of the oxidized 3C-SiC film surface was investigated by ATR-FTIR (attenuated total reflection Fourier transformed infrared spectroscopy). The root-mean-square suface roughness of the oxidized SiC layers was measured by AFM (atomic force microscope). The strength of the bond was measured by tensile strength meter. The bonded interface was also analyzed by IR camera and SEM (scanning electron microscope), and there are no bubbles or cavities in the bonding interface. The bonding strength initially increases with increasing HF concentration and reaches the maximum value at 2.0 % and then decreases. These results indicate that the 3C-SiC wafer direct bonding technique will offers significant advantages in the harsh MEMS applications.ions.

A Study on HF Chemical Passivation for Crystalline Silicon Solar Cell Application (결정질 태양전지를 위한 HF 화학 패시베이션 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Yu, Dong-Yeol;Li, Zhen-Hua;Kim, Yeong-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.51-55
    • /
    • 2011
  • The surface passivation is one of the important methods that can improve the efficiency of solar cells and can be classified into two methods: wet-chemical passivation and film passivation. In this paper, chemical HF treatment were employed for the passivation of n-type silicon wafers and their effects were studied. To investigate film passivation effects, the silicon nitride films were also deposited by PECVD (plasma-enhanced chemical vapor deposition) on n-type silicon wafers treated with chemical HF. The minority carrier lifetime measurements were used for evaluation of the passivation characteristics in the all experiments steps. We confirmed that the minority carrier lifetime was improved with chemical HF treatment due to passivation effects by H-termination.

Effects of Gate Insulators on the Operation of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 동작에 미치는 게이트 절연층의 영향)

  • Cheon, Young Deok;Park, Ki Cheol;Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Transparent thin film transistors (TTFT) were fabricated on $N^+$ Si wafers. $SiO_2$, $Si_3N_4/SiO_2$ and $Al_2O_3/SiO_2$ grown on the wafers were used as gate insulators. The rf magnetron sputtered zinc tin oxide (ZTO) films were adopted as active layers. $N^+$ Si wafers were wet-oxidized to grow $SiO_2$. $Si_3N_4$ and $Al_2O_3$ films were deposited on the $SiO_2$ by plasma enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD), respectively. The mobility, $I_{on}/I_{off}$ and subthreshold swing (SS) were obtained from the transfer characteristics of TTFTs. The properties of gate insulators were analyzed by comparing the characteristics of TTFTs. The property variation of the ZTO TTFTs with time were observed.

Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides by Relative and Internal Monostandard Neutron Activation Analysis Methods

  • Shinde, Amol D.;Acharya, Raghunath;Reddy, Annareddy V.R.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.562-568
    • /
    • 2017
  • Background: The chemical characterization of metallic alloys and oxides is conventionally carried out by wet chemical analytical methods and/or instrumental methods. Instrumental neutron activation analysis (INAA) is capable of analyzing samples nondestructively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and oxides were also analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance purposes. The samples are important in various fields including nuclear technology. Methods: Samples were neutron irradiated using nuclear reactors, and the radioactive assay was carried out using high-resolution gamma-ray spectrometry. Major to trace mass fractions were determined using both relative and internal monostandard (IM) NAA methods as well as OES methods. Results: In the case of alloys, compositional analyses as well as concentrations of some trace elements were determined, whereas in the case of zirconium oxides, six trace elements were determined. For method validation, British Chemical Standard (BCS)-certified reference material 310/1 (a nimonic alloy) was analyzed using both relative INAA and IM-NAA methods. Conclusion: The results showed that IM-NAA and relative INAA methods can be used for nondestructive chemical quality control of alloys and oxide samples.

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

Utilization of Supercompensated Glycogen of Hindlimb Muscles during Strenous Exercise in Rats (운동부하 흰쥐의 하지골격근에서 과축적 당원의 이용양상)

  • Jun, Chun-Bae;Ahn, Jong-Chul;Song, Dae-Heup;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.1
    • /
    • pp.137-154
    • /
    • 1997
  • The aim of the present investigation has, been to evaluate the depletion pattern of the supercompensated glycogen of hindlimb muscles during strenous exercise in rats. The plan of the maximizing muscle glycogen stores is based on the fact that a glycogen-depleted muscle by exercise will have an increased avidity for glycogen when exposed to a high carbohydrate diet. The glycogen concentration of soleus, red gastrocnemius and plantaris muscle, and liver was measured at 0, 30 and 60 minutes during treadmill exercise. The experimental animals were divided into 5 group - Normal(N), Control(C), 1Hour(1HR:after 1hour of glucose ingestion), 2Hour(2HR:after 2hour of glucose ingestion) and Exercise-1Hour(EX-1HR:glucose ingestion after 1 hour of preloading treadmill exercise)group - for glycogen storage study. The glycogen concentration of soleus, red gastrocnemius and plantaris muscles in N group was $4.57{\pm}0.34$, 5.11+0.24 and $6.55{\pm}0.20mg/gm\;wet\;wt.$, respectively. The glycogen concentration of soleus and red gastrocnemius in EX-1HR group were about 1.9 and 1.8 times than that of N group, respectively, but the concentration of plantaris was not higher than that of N group. The glycogen concentration of liver in N group was $41.0{\pm}1.47mg/gm\;wet\;wt.$ and the concentration of the overnight fasted C group was only 2.9% of the value of N group. The level of glycogen concentration of liver in the other glucose ingested groups(1HR, 2HR, including EX-1HR) was within 19 - 32% of that of N group. The blood glucose concentration of EX-1HR group was higher than that of N group, the plasma free fatty acid concentration of C and 2HR group was higher than that of N group, and the plasma insulin concentration of EX-1HR group was higher than that of N group. The concentrations of supercompensated glycogen of soleus and red gastrocnemius were rapidly decreased during 30 minutes of exercise but there was almost no changes of the concentration during the other 30 minutes of continuing exercise. The concentration of N group during 30 minutes of exercise was decreased but more slowly than those of EX-1HR group. The remaining level of glycogen after 60 minutes of exercise in EX-1HR group was higher than that of N group. Taken together, the mobilization of endogenous muscle glycogen at the first stage of exercise was proportioned to the initial level of glycogen concentration, and later on, when exercise continued, the muscle glycogen level was stabilized. And the remaining level of supercompensated muscle glycogen after 60 minutes of exercise was higher than that of normally stored glycogen level. The mobilization of the glycogen stroed in slow and fast oxidative muscle fibers is faster than in the fast glycolytic muscle fibers during strenous exercise.

  • PDF

Beneficial Effects of Nano-sized Bee Pollen on Testosterone-induced Benign Prostatic Hyperplasia in Rodents (테스토스테론-유도 양성전립선비대증에서 나노화 벌 화분의 효능 연구)

  • Bak, Jia;Pyeon, Hae-In;So, Soojeong;Lee, Seunghyun;Lee, Seungmin;Suh, Hwa-Jin;Kang, Jae Seon;Choi, Yun-Sik;Chung, Il Kyung
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.465-471
    • /
    • 2018
  • Bee pollen is one of many types of alternative remedies, and it has been used for a long time throughout the world. It has numerous health effects, including antifungal, antibacterial, and antioxidant properties, immune modulation, enhanced cell proliferation, and even anti-carcinogenic effects. This study was designed to elucidate the effects of bee pollen on benign prostatic hyperplasia in rodents. For this experiment, we used nano-sized bee pollen produced through wet-grinding technology, thereby the extraction efficiency of the active ingredients in the bee pollen was significantly enhanced. First, We found that nano-sized bee pollen significantly reduced the size of prostates enlarged by chronic testosterone administration. In addition, nano-sized bee pollen significantly reduced the plasma concentration of the prostate-specific antigen (PSA). Interestingly, nano-sized bee pollen did not reduce the testosterone-induced increase in the plasma concentration of prostaglandin $E_2$ ($PGE_2$). The beneficial effects of nano-sized bee pollen in reducing both the size of the prostate and the plasma concentration of PSA was comparable to that of dutasteride. Finally, nano-sized bee pollen did not cause damage in LNCaP cells which are androgen-sensitive human prostate adenocarcinoma cells. Together, these data indicate that nano-sized bee pollen may be able to be used as a good alternative remedy for the treatment of benign prostatic hyperplasia.

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

MINERAL NUTRITION OF GRAZING SHEEP IN NORTHERN CHINA II. SELENIUM, COPPER, MOLYBDENUM, IRON AND ZINC IN PASTURE, FEED SUPPLEMENTS AND SHEEP

  • Masters, D.G.;Purser, D.B.;Yu, S.X.;Wang, Z.S.;Yang, R.Z.;Liu, N.;Lu, D.X.;Wu, L.H.;Ren, J.K.;Li, G.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.107-113
    • /
    • 1993
  • This study determined the concentrations of micro-minerals in pastures, in feed supplements and in grazing, reproducing ewes, at different times during the year, at three farms in Northern China. Samples were collected 5 to 8 times during the year and analysed for selenium, copper, iron, molybdenum and zinc. On two farms selenium concentrations in both pastures and animal tissues were low for part of the year. The lowest concentrations in pasture (< $30{\mu}g/kg$ DM) and liver (< $100{\mu}g/kg$ wet weight) indicated that productivity of the sheep may be reduced by a deficiency of this element. On one farm copper concentrations in the lever were in the liver were in the deficient range (< $5{\mu}g/kg$ wet weight) for part of the year. It is likely that this is a result of high intakes of iron from pasture (up to 4.5 g Fe/kg DM) and soil, as indicated by high concentrations of iron in faeces (up to 7 g Fe/kg DM). Molybdenum intake is unlikely to have had much influence on copper absorption because pasture concentrations of this element were not unusually high (1 to 5 mg/kg DM). Zinc in pastures on two farms was below 10 mg/kg DM for part of the year. On one of these farms, the concentration of zinc in faeces was below 30 mg/kg DM throughout the year and this is consistent with zinc intakes of 7 to 15 mg/kg. Despite these low intakes, the concentratons of zinc in plasma were consistently above deficient levels. No clinical signs of deficiencies of any of the elements studied were observed.