Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.10.569

Reactivity Evaluation on Copper Etching Using Organic Chelators  

Kim, Chul Hee (Department of Chemistry, Inha University)
Lim, Eun Taek (Department of Chemical Engineering, Inha University)
Park, Chan Ho (Department of Chemistry, Inha University)
Park, Sung Yong (Department of Chemical Engineering, Inha University)
Lee, Ji Soo (Department of Chemical Engineering, Inha University)
Chung, Chee Won (Department of Chemical Engineering, Inha University)
Kim, Dong Wook (Department of Chemistry, Inha University)
Publication Information
Korean Journal of Materials Research / v.31, no.10, 2021 , pp. 569-575 More about this Journal
Abstract
The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.
Keywords
copper; chelator; ethylenediamine; piperidine; aminoethanol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. T. Bohr, Solid State Technol., 39, 105 (1996).
2 S. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004).   DOI
3 T. S. Choi, G. Levitin and D. W. Hess, ECS J. Solid State Sci. Technol., 2, 506 (2013).
4 F. Wu, G. Levitin and D. W. Hess, J. Electrochem. Soc., 159, H121 (2011).   DOI
5 E. T. Lim, J. S. Ryu and C. W. Chung, Thin Solid Films, 665, 51 (2018).   DOI
6 E. T. Lim, J. S. Ryu, J. S. Choi and C. W. Chung, Vacuum, 167, 145 (2019).   DOI
7 J. S. Ryu, E. T. Lim, J. S. Choi and C. W. Chung, Thin Solid Films, 672, 55 (2019).   DOI
8 P. A. Tamirisa, G. Levitin, N. S. Kulkarni and D. W. Hess, Microelectron. Eng., 84, 105 (2007).   DOI
9 A. Jain, T. T. Kodas and M. J. Hampden-Smith, Thin Solid Films, 269, 51 (1995).   DOI
10 S. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001).   DOI
11 F. Wu, G. Levitin and D. W. Hess, ACS Appl. Mater. Interfaces, 2, 2175 (2010).   DOI
12 S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 22, 240 (2004).   DOI
13 F. Wu, G. Levitin and D. W. Hess, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 29, 011013 (2011).
14 B. J. Howard and C. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991).   DOI
15 K. Ohno, M. Sato and Y. Arita, J. Electrochem. Soc., 143, 4089 (1996).   DOI
16 W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005).   DOI
17 J. W. Lee, Y. D. Park, J. R. Childress, S. J. Pearton, F. Shariff and F. Ren, J. Electrochem. Soc., 145, 2585 (1998).   DOI
18 M. S. Kwon and J. Y. Lee, J. Electrochem. Soc., 146, 3119 (1999).   DOI
19 S. W. Kang, H. U. Kim and S. W. Rhee, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 17, 154 (1999).   DOI