• Title/Summary/Keyword: weighted-valued

Search Result 42, Processing Time 0.02 seconds

WEIGHTED COMPOSITION OPERATORS ON WEIGHTED SPACES OF VECTOR-VALUED ANALYTIC FUNCTIONS

  • Manhas, Jasbir Singh
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1203-1220
    • /
    • 2008
  • Let V be an arbitrary system of weights on an open connected subset G of ${\mathbb{C}}^N(N{\geq}1)$ and let B (E) be the Banach algebra of all bounded linear operators on a Banach space E. Let $HV_b$ (G, E) and $HV_0$ (G, E) be the weighted locally convex spaces of vector-valued analytic functions. In this paper, we characterize self-analytic mappings ${\phi}:G{\rightarrow}G$ and operator-valued analytic mappings ${\Psi}:G{\rightarrow}B(E)$ which generate weighted composition operators and invertible weighted composition operators on the spaces $HV_b$ (G, E) and $HV_0$ (G, E) for different systems of weights V on G. Also, we obtained compact weighted composition operators on these spaces for some nice classes of weights.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH OPERATORS WITH APPLICATIONS TO VECTOR VALUED INEQUALITIES

  • Liu, Feng;Xue, Qingying
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1035-1058
    • /
    • 2021
  • Under certain rather weak size conditions assumed on the kernels, some weighted norm inequalities for singular integral operators, related maximal operators, maximal truncated singular integral operators and Marcinkiewicz integral operators in nonisotropic setting will be shown. These weighted norm inequalities will enable us to obtain some vector valued inequalities for the above operators.

STEPANOV ALMOST PERIODIC SOLUTIONS OF CLIFFORD-VALUED NEURAL NETWORKS

  • Lee, Hyun Mork
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2022
  • We introduce Clifford-valued neural networks with leakage delays. Furthermore, we study the uniqueness and existence of Clifford-valued Hopfield artificial neural networks having the Stepanov weighted pseudo almost periodic forcing terms on leakage delay terms. However the noncommutativity of the Clifford numbers' multiplication made our investigation diffcult, so our results are obtained by decomposing Clifford-valued neural networks into real-valued neural networks. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.

QUANTITATIVE WEIGHTED BOUNDS FOR THE VECTOR-VALUED SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

  • Hu, Guoen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1791-1809
    • /
    • 2018
  • Let T be the singular integral operator with nonsmooth kernel which was introduced by Duong and McIntosh, and $T_q(q{\in}(1,{\infty}))$ be the vector-valued operator defined by $T_qf(x)=({\sum}_{k=1}^{\infty}{\mid}T\;f_k(x){\mid}^q)^{1/q}$. In this paper, by proving certain weak type endpoint estimate of L log L type for the grand maximal operator of T, the author establishes some quantitative weighted bounds for $T_q$ and the corresponding vector-valued maximal singular integral operator.

WEIGHTED VECTOR-VALUED BOUNDS FOR A CLASS OF MULTILINEAR SINGULAR INTEGRAL OPERATORS AND APPLICATIONS

  • Chen, Jiecheng;Hu, Guoen
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.671-694
    • /
    • 2018
  • In this paper, we investigate the weighted vector-valued bounds for a class of multilinear singular integral operators, and its commutators, from $L^{p_1}(l^{q_1};\;{\mathbb{R}}^n,\;w_1){\times}{\cdots}{\times}L^{p_m}(l^{q_m};\;{\mathbb{R}}^n,\;w_m)$ to $L^p(l^q;\;{\mathbb{R}}^n,\;{\nu}_{\vec{w}})$, with $p_1,{\cdots},p_m$, $q_1,{\cdots},q_m{\in}(1,\;{\infty})$, $1/p=1/p_1+{\cdots}+1/p_m$, $1/q=1/q_1+{\cdots}+1/q_m$ and ${\vec{w}}=(w_1,{\cdots},w_m)$ a multiple $A_{\vec{P}}$ weights. Our argument also leads to the weighted weak type endpoint estimates for the commutators. As applications, we obtain some new weighted estimates for the $Calder{\acute{o}}n$ commutator.

WEIGHTED COMPOSITION OPERATORS ON NACHBIN SPACES WITH OPERATOR-VALUED WEIGHTS

  • Klilou, Mohammed;Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1125-1140
    • /
    • 2018
  • Let A be a normed space, ${\mathcal{B}}(A)$ the algebra of all bounded operators on A, and V a family of strongly upper semicontinuous functions from a Hausdorff completely regular space X into ${\mathcal{B}}(A)$. In this paper, we investigate some properties of the weighted spaces CV (X, A) of all A-valued continuous functions f on X such that the mapping $x{\mapsto}v(x)(f(x))$ is bounded on X, for every $v{\in}V$, endowed with the topology generated by the seminorms ${\parallel}f{\parallel}v={\sup}\{{\parallel}v(x)(f(x)){\parallel},\;x{\in}X\}$. Our main purpose is to characterize continuous, bounded, and locally equicontinuous weighted composition operators between such spaces.

WEIGHTED ESTIMATES FOR CERTAIN ROUGH SINGULAR INTEGRALS

  • Zhang, Chunjie
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1561-1576
    • /
    • 2008
  • In this paper we shall prove some weighted norm inequalities of the form $${\int}_{R^n}\;|Tf(x)|^pu(x)dx\;{\leq}\;C_p\;{\int}_{R^n}\;|f(x)|^pNu(x)dx$$ for certain rough singular integral T and maximal singular integral $T^*$. Here u is a nonnegative measurable function on $R^n$ and N denotes some maximal operator. As a consequence, some vector valued inequalities for both T and $T^*$ are obtained. We shall also get a boundedness result of T on the Triebel-Lizorkin spaces.

ON HYPERHOLOMORPHIC Fαω,G(p, q, s) SPACES OF QUATERNION VALUED FUNCTIONS

  • Kamal, Alaa;Yassen, Taha Ibrahim
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.87-101
    • /
    • 2018
  • The purpose of this paper is to define a new class of hyperholomorphic functions spaces, which will be called $F^{\alpha}_{{\omega},G}$(p, q, s) type spaces. For this class, we characterize hyperholomorphic weighted ${\alpha}$-Bloch functions by functions belonging to $F^{\alpha}_{{\omega},G}$(p, q, s) spaces under some mild conditions. Moreover, we give some essential properties for the extended weighted little ${\alpha}$-Bloch spaces. Also, we give the characterization for the hyperholomorphic weighted Bloch space by the integral norms of $F^{\alpha}_{{\omega},G}$(p, q, s) spaces of hyperholomorphic functions. Finally, we will give the relation between the hyperholomorphic ${\mathcal{B}}^{\alpha}_{{\omega},0}$ type spaces and the hyperholomorphic valued-functions space $F^{\alpha}_{{\omega},G}$(p, q, s).

An Interval Valued Bidirectional Approximate Reasoning Method Based on Similarity Measure

  • Chun, Myung-Geun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.579-584
    • /
    • 1998
  • In this work, we present a method to deal with the interval valued decision making systems. First, we propose a new type of equality measure based on the Ordered Weighted Averaging (OWA) operator. The proposed equality measure has a structure to render the extreme values of the measure by choosing a suitable weighting vector of the OWA operator. From this property, we derive a bidirectional fuzzy inference network which can be applied for the decisionmaking systems requiring the inverval valued decisions.

  • PDF