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STEPANOV ALMOST PERIODIC SOLUTIONS OF

CLIFFORD-VALUED NEURAL NETWORKS

Hyun Mork Lee

Abstract. We introduce Clifford-valued neural networks with leak-
age delays. Furthermore, we study the uniqueness and existence
of Clifford-valued Hopfield artificial neural networks having the
Stepanov weighted pseudo almost periodic forcing terms on leakage
delay terms. However the noncommutativity of the Clifford num-
bers’ multiplication made our investigation diffcult, so our results
are obtained by decomposing Clifford-valued neural networks into
real-valued neural networks. Our analysis is based on the differ-
ential inequality techniques and the Banach contraction mapping
principle.

1. Introduction

In the past decades, the dynamics of various neural networks have
been extensively studied. Many kinds of neural networks such as Hop-
field neural networks and cellular neural networks etc., have received
much more attention from many fields ([9],[12],[14],[16]). They are a
good tool for the approximation of dynamical systems, and so their suc-
cessful application requires an understanding of their long term behavior
with dynamical properties, in specially, their existence, uniqueness and
stability.

The mathematical theory that enables machine learning of artificial
intelligence is Kolmogorov-Arnold theorem[6], which is the starting point
of neural network models. A sufficiently large function space can be
constructed by choosing a suitable activation function and repeating
only this function and arithmetic operation.
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It is known that, as a generalization of real-valued neural networks,
the research of complex-valued and quaternion-valued neural networks
have been investigated in several kinds of neural networks have attracted
more and more attention due to have more advantages than real-valued
neural networks in many aspects. However they are sometimes inap-
plicable for some for some engineering problems for instance such as
neural computing, computer and robot vision, image and signal pro-
cessing. For this reason, researchers attempted recently a more general
and complicated neural networks, which is Clifford-valued neural net-
works. Clifford-valued neural networks are a kind of neural networks
whose state variables, connection weights and external inputs are Clif-
ford numbers. They are generalizations of real-valued, complex-valued
and quaternion-valued neural networks. However, because the multipli-
cation of quaternion numbers does not satisfy the commutative law. In
order to avoid the non-commutativity of the quaternion multiplication,
researchers decomposed given system into real-valued systems.

In recent years, C. Xu and P. Li [12] investigate the pseudo almost
periodic solution of the following Hopfield neural networks with time-
varying leakage delays:

x′(t) = −ci(t)xi(t− ηi(t)) +
n∑
j=1

aij(t)gj(xj(t− τij(t))) (1)

+

n∑
j=1

n∑
l=1

bijl(t)gj(xj(t− σijl(t)))gl(xl(t− µijl(t))) + Ii(t).

The initial conditions associated with system (1) are of the form

xi(s) = ϕi(s), s ∈ [−τ, 0], ϕi ∈ C([−τ, 0],A), i ∈ I,

Motivated by the aforementioned works, to illustrate our abstract re-
sult, we investigate and establish some sufficient conditions to guarantee
the existence and uniqueness of Stepanov-like weighted pseudo almost
periodic solutions of Hopfield neural network for the system (1) on Clif-
ford algebra as follow: n is the number of units in a neural network,
xi(t) ∈ A, which is known as Clifford number, corresponds to the state
vector of the i-th unit at time t, ci(t) > 0 represents the rate with which
the i-th unit will reset its potential to the resting state in isolation when
disconnected from the network and external inputs, aij(t), bijl(t) ∈ A
are first-order and second-order connection weights of the natural net-
work, ηi(t) > 0 and τij(t), σijl(t), νijl(t) > 0 correspond to the leakage
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and transmission delays, respectively, Ii(t) ∈ A denotes the external in-
puts at time t, and fj , gj : A → A is the activation function for signal
transmission of the i-th neuron.

2. Preliminaries and notations

The Clifford algebra was establishment by the British mathemati-
cian William K. Clifford in 1878 which is a generalization of the plural,
quaternion, and Glassman algebra.

First, we introduce the definition and properties of Clifford algebra
which is well known. We shall refer to [8],[14],[12] and references therein.

Clifford algebra over Rn is defined asA = {
∑

A⊂{1,2,3,··· ,m} a
AeA, a

A ∈
R} where eA = eh1eh2 · · · ehµ , with A = {h1, h2, · · · , hµ}, 1 ≤ h1 < h2 <
h2 < · · · < hµ ≤ m.

Moreover, e∅ = e0 = 1 and e{h} = eh, h = 1, 2, · · · ,m are called
Clifford generators which satisfy the Hamilton’s multiplication rules ;
the relations e2

i = −1 and eiej + ejei = 0, i = j, i, j = 1, 2, 3, · · · ,m.
For simplicity, when one element is the product of multiple Clifford
generators, we will write its subscripts together. For example, e1e2 = e12

and e3e7e2e5 = e3725. We define ∆ = {∅, 1, 2, · · ·A, · · · , 12 · · ·m} then it
is easy to see that A = {

∑
A a

AeA, a
A ∈ R}, where

∑
A is a brief form

of
∑

A∈4 and dimRA =
∑m

k=o

(
m
0

)
= 2m.

For any Clifford number x =
∑

A x
AeA ∈ A, the involution of x is

defined as x̄ =
∑

A a
AēA where ēA = (−1)

σ[A](σ[A]+1)
2 and

σ[A] =

{
0, if A = ∅
µ, if A = h1h2 · · ·hµ.

From the definition, it is directly deduced that eAēA = ēAeA = 1.
Moreover, For Clifford-valued function x =

∑
A x

AeA where xA : R →
R, A ∈ A, and its derivative is given by dx(t)

dt =
∑

A
dxA

dt dteA. Since

eB ēA = (−1)
σ[A](σ[A]+1)

2 eBeA, we can write eB ēA = ec or eB ēA = −ec,
where ec is a basis of Clifford algebra A. For example, eh1h2 ēh2h3 =
−eh1h2eh2h3 = −eh1eh2eh3 = −eh1(−1)eh3eh1eh3 = eh1h3 . Hence it is
possible to find a unique corresponding basis ec for the given eB ēA.
Define

σ[B · Ā] =

{
0, if eB ēA = ec
µ, if eB ēA = −ec

and then eB ēA = (−1)σ[B·Ā]ec.
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In addition, for any g ∈ A, we can find gc a unique satisfying gB·Ā =

(−1)σ[B·Ā]gc for eB ēA = (−1)σ[B·Ā]ec. Hence gB·ĀeB ēA = gB·Ā(−1)σ[B·Ā]

eC = (−1)σ[B·Ā]gCb(−1)σ[B·Ā]eC = gCeC and g =
∑

C g
CeC ∈ A.

Remark 1.Clifford-valued system (1) includes real-valued systems and
complex-valued systems as its special cases. In fact system (1), when
m, the number of the generators of A, equals m = 0, m = 1 and m = 2,
system (1) degenerates into real-valued, complex-valued, and quternion-
valued systems as its special cases, respectively. And so, in many re-
spects, Clifford-valued system model is far more advantages than the
system model in [13],[15].

Secondly, let (X, || · ||) be a Banach space and BC(R, X) be the set of
all bounded continuous functions from R to X. For a given T > 0 and

each ρ(weights), let µ(T, ρ)=
∫ T
−T ρ(t)dt. Furthermore, we review some

definitions and lemmas well known from our references( [1],[4],[12],[17])
and references therein.

Definition 2.1. A function f ∈ BC(R,A) is called almost periodic
on A if for every ε > 0, if there exists an l > 0 such that every interval
of length l(ε) contains a number τ with property that

||f(t+ τ)− f(t)|| < ε, for every t ∈ R.
The collection of such functions is denoted by AP (R,A).

Definition 2.2. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of
a function f : R→ X is defined by f b(t, s) := f(t+ s).

Definition 2.3. Let p ∈ [1,∞). The spaceBSp(R,A) of all Stepanov
bounded functions, with the exponent p consists of all measurable func-
tions f : R → A such that f b ∈ Lp(R;Lp((0, 1),A)). This is a Banach
space with the norm

||f ||Sp := sup
t∈R

(∫ t+1

t
||f(τ)||pdτ

) 1
p
.

We define the Stepanov weighted ergodic space, for f ∈ BC(R,A),

PAP0(Lp([0, 1],A), ρ)

= {f ; lim
T→∞

1

µ(T, ρ)

∫ T

−T

(∫ t+1

t
||f(s)||pds

) 1
p
ρ(t)dt = 0}.

Definition 2.4. A function f ∈ BSp(R,A) is said to be a SP -
weighted pseudo-almost periodic if it can be expressed as f = h + ϕ,
where hb ∈ AP (R, (Lp([0, 1],A)), ϕb ∈ PAP0(R, Lp([0, 1],A), ρ).
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The collection of such functions will be denoted by PAP (A, ρ, p) =
PAP (Lp([0, 1],A), ρ) which is a closed subspace of BC(R, Lp([0, 1],A))
relatively to the norm || · ||Sp , and therefore is a Banach space.
Note that f ∈ SpWPP0(R,A, ρ) if and only if f b ∈WPP0(R, Lp([0, 1],A)
, ρ).

Theorem 2.5. [2] For Banach space X,Y , let f ∈ C(R×X : Y ) be
a almost periodic in t ∈ R uniformly in y ∈ K where K ⊂ Y ia any
compact subset K ⊂ Y . Then the superposition operator Nf defined
by:

Nf : AP (R, X)→ AP (R, Y ), Nf (u) := [t→ (f(t), u(t)]

is well defined continuous from AP (R, X) into AP (R, Y ).
Furthermore, u ∈ AP (R, X). Then we have [t→ f(t, u(t))] ∈ AP (R, Y ).

Lemma 2.6. If ϕ(·) ∈ PAPSp(R,A), τ(·) ∈ APSp(R,A), then
ϕ(·,−τ(·)) ∈ PAPSp(R,A).

Definition 2.7. A function f =
∑n

i=1 f
AeA : R → A is said to be

Stepanov almost periodic, if fA ∈ SpAP (R,R) for all A ∈ A.

Similar to the proof of Lemma 3.7 in [10], one can prove:

Lemma 2.8. Let f ∈ C(R,A) and satisfy the Lipschiz condition.
If g ∈ SpAP (R, Lp((0, 1),A)), then f(g(x)) ∈ SpAP (R, Lp((0, 1),A)).

Noting that M [ai] > 0, using the theory of exponential dichotomy in
[5], we can easily get:

Lemma 2.9. For i = 1, 2, 3, · · · , n, ai ∈ BC(R,R) with inft∈R ai(t) >
0. If f ∈ BC(R,Rn), then the linear system

x
′
(t) = A(t)x(t) + f(t)

has a unique bounded solution

x(t) =

∫ t

−∞
e
∫ t
s A(u)duf(s)ds,

where A(t) = diag(−a1(t),−a2(t), · · · ,−an(t)).

3. Existence results for Stepanov weighted pseudo almost
periodic solution

To avoid the difficulty for the non-commutativity of multiplication
of Clifford numbers, firstly we transform the Clifford-valued system (1)



44 Hyun Mork Lee

into the real-valued system which is easily to handle ([8], [14], [12]).
This can be established using by eAēA = ēAeA = 1 and ēAeA = eB.

For any g ∈ A, we can find gc a unique satisfying gB·Ā = (−1)σ[B·Ā]gc

for eB ēA = (−1)σ[B·Ā]ec. So gB·ĀeB ēA = gBĀ(−1)σ[B·Ā]eC = (−1)σ[B·Ā]

gCb(−1)σ[B·Ā]eC = gCeC and g =
∑

C g
CeC ∈ A.

By decomposing (1) into x =
∑

A x
AeA, we obtain

x
′A
i (t) = −ci(t)xAi (t− ηi(t)) +

n∑
j=1

∑
B

aA·B̄ij (t)gBj (xj(t− τij(t))),

+
n∑
j=1

n∑
l=1

∑
B∈Λ

bA·B̄ijl (t)gBj (xj(t− xijl(t)))gBl (xl(t− µijl(t)))

+ IAi (t), xAi (s) = xAi (s), s ∈ [−τ, 0], i ∈ I, (2),

where

xi(t) =
∑
A

xAi (t)eA, Ii(t) =
∑
A

IAi (t)eA,

aij(t) =
∑
A

aCij(t)eC , a
A·B̄
ij (t) = (−1)n[A·B̄]aCij(t),

bijl(t) =
∑
A

bCijl(t)eC , b
A·B̄
ijl (t) = (−1)n[A·B̄]bCijl(t),

gj(xj(t− τijl(t))) =
∑
B∈λ

gBj (ϕC1
j (t− τijl(t)), ϕC2

j (t− τijl(t)), · · · ,

xC2m
j (t− τijl(t)))eB.

Remark 2. It is clear that if x = (x0
1, x

1
1, · · · , x1·2····m

1 , x0
2, x

1
2, · · · , x1·2····m

2 ,
· · · , x0

n, x
1
n, · · · , x1·2····m

n )T : {xAi } is a solution to system (2), then x =
(x1, x2, · · ·xn)T must be a solution to (2), where xi =

∑
A x

A
i eA, A ∈ ∆.

For the sake of convenience to work (3) we established some hypoth-
esis and sufficient criteria, which will be used in this paper, as following:

(H1) For i, j, l ∈ I and A,B ∈ ∆, ci(t) ∈ SpWPAP (R,A), aA·B̄ij (t),

bA·B̄ij (t), Ii(t) ∈ SpWPAP (R,A), τij(t), σijl(t), µijl(t) ∈ SpWPAP (R,A).

(H2) For any u, v ∈ A, functions fBj , g
B
j ∈ C(A,R),there exist posi-

tive constant Lfj , Lgj such that

||fBj (u)− fBj (v)|| ≤ Lfj
∑
C∈A
||uC − vC ||, fBj : R2m → R,
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||gBj (u)− gBj (v)|| ≤ Lgj
∑
C∈A
||uC − vC ||, fBj : R2m → R.

Additionally, we suppose that fBj (0) = gBj (0) = 0.

(H3) Let D = {ϕ : ϕ ∈ SpWPAP (R,A)}, ||x||Sp = maxi∈I {maxA∈∆

|xAi |Sp} and ϕ0 = {(ϕ0)Ai }, where |xAi |Sp = supt∈R(
∫ t+1
t |xAi (s)|p ds)

1
p ,

(ϕ0)Ai (t) =
∫ t
−∞ e

−
∫ t
s ai(u)duIAi (s)ds, respectively. It is clear that D is a

Banach space.

(H4) For i ∈ I, there is a function ãi ∈ BC(R, (0,+∞)) and a con-
stant Ki > 0 satisfying the following inequality:

e−
∫ t
s ai(u)du ≤ Kie

−
∫ t
s a
∗
i (u)du, for all t, s,Ki ∈ R, t− s > 0.

(H5) Let

max
i,j∈I
{Ki

I∗i
ã∗i
} := k, max

i∈I,A∈∆
{
( 1

p(ã∗i )

) 1
p
2mΩA

i } = ρ < 1,

max
i∈I,A∈∆

{
( 1

p(ã∗i )

) 1
p
2mΩ

′A
i } = δ,

δk

1− δ
< 1,

where

ΩA
i = max

A∈∆

(
(c∗i η

∗
i )

1
p +

∑
B

aA·B̄ij (t)Lgj +
n∑
l=1

∑
B

bA·B̄ijl (t)(Lgj + Lgl )
)
,

Ω
′A
i =

( 1

pã∗i

) 1
p
(
c∗i η
∗
i + 2m

n∑
j=1

(∑
B

a∗ij
A·B̄Lfj

n∑
l=1

∑
B

b∗ijl
A·B̄LgjL

l
j

))
,

and ϕ∗ = supt∈R |ϕ(t)|, ϕ∗ = inft∈R |ϕ(t)|.
Using similar ideas as in Zhang [17], one can easily show the following

result.

Lemma 3.1. Assume that that (H1) ∼ (H5) hold, we define the non-
linear operator (Λϕ)Ai (t) by setting,

(Λϕ)Ai (t) =

∫ t

−∞
e−

∫ t
s ai(u)du(Γϕ)Ai (s)ds
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where

(Γϕ)Ai (t) =
[
ci(s)

∫ t

t−ηi(s)
ϕ
′A
i (u)du+

n∑
j=1

∑
B

aA·B̄ij (s)

· gBj (ϕj(s− τij(t))) +
n∑
j=1

n∑
l=1

∑
B

bA·B̄ij (s)

· gBj (ϕj(s− σijl(s)))gBl (ϕl(s− µijl(t))) + IAi (s)
]
ds.

Then (Λϕ)Ai (t) maps into itself in the region D.

Proof. Applying hypothesis (H1) ∼ (H5), the theorems and lem-
mas given previous, we can easily deduce that system (1) has a unique
bounded solution (2). Let define a mapping Λ from D into itself by
given (Λϕ)(t) = {(Γϕ)Ai (t)}, for any ϕ ∈ D. We show (Λϕ)Ai (t) is a
self mapping of from D. Since (Γϕ)Ai (t) Stepanov weighted pseudo al-
most periodic, we can decompose as (Γϕ)Ai (t) = Fi(t) + Gi(t), where

F bi ∈ AP (R, Lp([0, 1],A) and Gbi ∈ PAP0(R, Lp([0, 1],A). Furthermore,
since Fi ∈ SpWPAP (R,A) , for given εi > 0, there exists lε > 0 such
that every interval of length l contains a number τ ∈ [t, t+ lεi ] such that

sup
t∈R

[ ∫ t+1

t
||Fi(t+ τ)− Fi(t)||pds

] 1
p
< εi

By hypothesis and Lemmas, arguing as in the proof of ([3] Theorem 2),
one can show easily that

sup
t∈R

[ ∫ t+1

t
||Ψi(s+ τ)−Ψi(s)||pds

] 1
p
ρ(t)dt

≤ εi.

Hence we get that Ψi ∈ SpWPAP (R,A).

Next we show that Φi ∈ SpWPAP0(R,A):

lim
T→∞

1

µ(−T, T )

∫ T

−T

( ∫ t+1

t
||Φi(s)||pds

) 1
p ρ(t)dt = 0.
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By similar method in the proof of [15, Lemma 2.2] and definition, we
have

1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|
∫ t

−∞
e−

∫ t
s ai(u)duΦi(s)ds|pdu

] 1
p
ρ(t)dt

=
1

µ(T, ρ)

∫ T

−T

[
sup
t∈R

∫ t+1

t
|
∫ ∞

0
e−ãiσΦi(t− σ)dσ|pdu

] 1
p
ρ(t)dt

≤ 1

µ(T, ρ)

∫ T

−T
[sup
t∈R

∫ ∞
0

e−ãiσ|
∫ t+1

t
|Φi(t− σ)dσ|pdt

] 1
p
ρ(t)dt

≤
( Ki

pã∗i

) 1
p 1

µ(T, ρ)

∫ T

−T

[ ∫ t+1

t
|Φi(t− σ)dσ|pdt

] 1
p
ρ(t)dt

≤ εi

( Ki

pã∗i

) 1
p
.

Thus, Φi(s) ∈ SpWPAP0,
and so

(Λϕ)Ai (t)

=

∫ t

−∞
e−

∫ t
s ai(u)duFi(s)ds+

∫ t

−∞
e−

∫ t
s ai(u)duGi(s)ds

= Ψi(s) + Φi(s)

∈ D,

which implies that Λϕ maps D into itself.

Furthermore, for all ϕ ∈ D, set

D∗ = {ϕ | ϕ ∈ D, ||ϕ− ϕ0||Sp ≤
δk

1− δ
},

then, since (ϕ0)Ai (t) =
∫ t
−∞ e

−
∫ t
s ai(u)duIAi (s)ds,

we can easily obtain

||ϕ0||Sp ≤ max
i,j∈I
{Ki

I∗i
ã∗i
} := k

and
||ϕ||SP ≤ ||ϕ− ϕ0||Sp + ||ϕ0||Sp ≤ δk

1−δ + k = k
1−δ , for all ϕ ∈ D∗.
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Using the Minkowski’s inequality,
we obtain

||(Λϕ)Ai − (ϕ0)Ai ||Sp

≤ sup
t∈R

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

[
ci(s)

∫ s

s−ηi(s)
ϕ
′A
i (s)ds+

n∑
j=1

∑
B

aA·B̄ij (s)

· fBj (ϕj(s− τij(s))) +

n∑
j=1

n∑
l=1

∑
B

bA·B̄ijl (s)gBj (ϕj(s− σijl(s)))gBl (ϕl(s)

−µijl(s)))ds||pdθ
] 1
p ≤ sup

t∈R

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)duci(s)

∫ s

s−ηi(s)
ϕ
′A
i (s)

ds||pdθ
] 1
p

+

n∑
j=1

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

∑
B

a∗ij
A·B̄(s)fBj (ϕj(s− τij(s))

)ds||pdθ
] 1
p

+

n∑
j=1

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

n∑
l=1

∑
B

b∗ijl
A·B̄(s)gBj (ϕj(s−

σijl(s)))g
B
l (ϕl − µijl(s)))ds||

1
pdθ
] 1
p ≤ sup

t∈R
[

∫ t+1

t

∫ ∞
0

e−pãiξc∗i η
∗||ϕ||Sp

+

n∑
j=1

∑
B

a∗ij
A·B̄Lfj

∑
C

∫ t+1

t

∫ ∞
0

e−pãiξ||ϕCi (θ − ξ − τij(θ − ξ))dξ||pdθ]
1
p

+
n∑
j=1

n∑
l=1

∑
B

b∗ijl
A·B̄Lgj

∑
C

∫ t+1

t
||
∫ ∞

0
e−pãiξ(ϕCl (θ − ξ − σij(θ − ξ)))

Lgl (ϕ
C
j (θ − ξ − µijl(θ − ξ)))dξ|pdθ

] 1
p ≤

( 1

pã∗i

) 1
p
c∗i η
∗
i ||ϕ||Sp + 2m

n∑
j=1(∑

B

a∗ij
A·B̄Lfj +

n∑
l=1

∑
B

b∗ijl
A·B̄LgjL

l
j

)
||ϕ||Sp ≤

( 1

pã∗i

) 1
p
(
c∗i η
∗
i + 2m

n∑
j=1

(∑
B

a∗ij
A·B̄Lfj +

n∑
l=1

∑
B

b∗ijl
A·B̄LgjL

l
j)
)
||ϕ||Sp

≤ δk

1− δ
,

which implies that Λϕ ∈ D, consequently the mapping Λϕ is a self
mapping from D into itself. The proof is complete.
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Now we give our main theorem. By arguing as in the verification and
applying the similar mathematical analysis techniques of Theorem 3.1
in [14], we derive some new sufficient conditions ensuring the existence,
uniqueness of weighted pseudo almost periodic solutions of system (2).

Theorem 3.2. Assume that (H1) ∼ (H5) hold, then system (2) has
a unique Sp-almost periodic solution in the region D∗ = {ϕ|ϕ ∈ D, ||ϕ−
ϕ0||Sp ≤ δk

1−δ}.

Proof. From the previous Lemmas and hypotheses, we see that the
equation (2) has a unique weighted pseudo almost periodic solution as
following

(Λϕ)Ai (t) =

∫ t

−∞
e−

∫ s
s ai(u)du

[
ci(s)

∫ s

s−ηi(s)
ϕ
′
i(s)du+

n∑
j=1

∑
B

aA·B̄ij (s)

· gBj (ϕj(s− τij(s))) +
n∑
j=1

n∑
l=1

∑
B

bA·B̄ijl (s)

· gBj (ϕj(s− σijl(s)))gBl (ϕl(s− µijl(s))) + IAi (s)
]
dt

Define a mapping Λ : D∗ → D∗ by given (Λϕ).
By using the Minkowski’s inequality and above definition, we have

||(Λϕ)Ai − (Λψ)Ai ||Sp

≤ sup
t∈R

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

[
ci(s)

∫ s

s−ηi(s)
(ϕ
′A
i (s)− ψ′Ai (s))ds

+
n∑
j=1

∑
B

aA·B̄ij (s) · fBj (ϕj(s− τij(s))− ψj(s− τij(s))) +
n∑
j=1

n∑
l=1∑

B

bA·B̄ijl (s)gBj (ϕj(s− σijl(s))− ψj(s− σijl(s)))gBl (ϕl(s− µijl(s))

−ψl(s− µijl(s)))
]
ds||pdθ

] 1
p ≤ sup

t∈R

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)duci(s)∫ s

s−ηi(s)
(ϕ
′A
i (s)− ψ′Ai (s))ds||pdθ

] 1
p

+

n∑
j=1

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

∑
B

a∗ij
A·B̄(s)fBj (ϕj(s− σij(s))− ψj(s− σij(s))ds||pdθ

] 1
p

+
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n∑
j=1

[ ∫ t+1

t
||
∫ θ

−∞
e−

∫ θ
s ai(u)du

n∑
l=1

∑
B

b∗ijl
A·B̄(s)gBj (ϕj(s− σijl(s))−

ψj(s− σijl(s)))gBl (ϕl − µijl(s))− ψl(s− σijl(s)))ds||pdθ
] 1
p ≤ sup

t∈R

[

∫ t+1

t

∫ ∞
0

e−pãiξc∗i η
∗||ϕ− ψ||Sp +

n∑
j=1

∑
B

a∗ij
A·B̄Lfj

∑
C

[ ∫ t+1

t

∫ ∞
0

e−pãiξ||ϕCi (θ − ξ − τij(θ − ξ))− ψCi (θ − ξ − τij(θ − ξ))dξ||pdθ
] 1
p

+

n∑
j=1

n∑
l=1

∑
B

b∗ijl
A·B̄Lgj

∑
C

[ ∫ t+1

t
||
∫ ∞

0
e−pãiξLgi

(
ϕCi (θ − ξ − σijl(θ −

ξ))− ψCi (θ − ξ − σijl(θ − ξ))
)
Lgl

(
ϕCl (θ − ξ − µijl(θ − ξ))− ψCl (θ −

ξ − µijl(θ − ξ))
)
dξ||pdθ

] 1
p ≤

( 1

pã∗i

) 1
p
(
c∗i η
∗
i ||ϕ− ψ||Sp + 2m

n∑
j=1

(∑
B

a∗ij
A·B̄Lfj +

n∑
l=1

∑
B

b∗ijl
A·B̄LgjL

l
j)
)
· ||ϕ− ψ||Sp ≤

( 1

pã∗i

) 1
p
(c∗i η

∗
i + 2m

·
n∑
j=1

(∑
B

a∗ij
A·B̄Lfj

n∑
l=1

∑
B

b∗ijl
A·B̄LgjL

l
j

)
· ||ϕ− ψ||Sp

≤ δk

1− δ
||ϕ− ψ||Sp ≤ ρ||ϕ− ψ||Sp

Since ρ < 1, it implies that Λ : D∗ → D∗ is a contraction mapping.
By contraction mapping principle of the D∗, we obtain that the mapping
Λ has a unique fixed point z ∈ D∗ such that Λz = z which means that
the equation (2) has a unique weighted pseudo almost periodic solution.
The proof of the theorem is completed.

4. Examples

In this section we consider a simple application of our abstracts results
we give an modified example [1], [12] for n = m = 2 as the following
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Hopfield neural networks with time-varing leakage delays.

x′(t) = −ci(t)xi(t− ηi(t)) +
2∑
j=1

aij(t)gj(xj(t− τij(t))) · · · · · · (3)

+

2∑
j=1

2∑
l=1

bijl(t)gj(xj(t− σijl(t)))gl(xj(t− µijl(t))) + Ii(t)

where

a1(t) = 0.1 + 0.2t| cos
√

3t|, a2(t) = 1.7 + 0.3| sin
√

2t|,

f1(x) = (|x0 + 1| − |x2 − 1|)e0 + e1 sin

√
2

2
(x1 + x12)− e2 sinx2

+e12 tanh(x2 + x12 + x0)), e0 = c, e1 = i, e2 = j, e12 = k.

By a simple calculation, we can show easily that all the conditions in
our main Theorem 3.2 are satisfied, which means the existence unique
Spepanov weighted pseudo almost periodic solution of (3).
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[2] J. Blot ,P. Cieutat,G. M. N’Guérékata and D. Pennequin, Superposition operators
between various almost periodic function spaces and applications, Commun. Math.
Anal., 6 (2000), no.1, 42-70.

[3] F. Cherif, M. Abdelaziz, Stepanov-Like Pseudo Almost Periodic Solution of
Quaternion-Valued for Fuzzy Recurrent Neural Networks with Mixed Delays, Neu-
ral Process. Lett., 51 (2020), no. 3, 2211-2243.

[4] T. Diagana, G. M. Mophou and G. M. N’Guerekata, Existence of weighted
pseudo-almost periodic solutions to some classes of differential equations with
Sp -weighted pseudo-almost periodic coefficients, Nonlinear Anal., 72 (2010), no.
1, 430-438.

[5] A. M. Fink, Almost periodic differential equations, Lecture notes in mathematics,
Springer Berlin, 377 (1974).

[6] A. N. Kolmogorov, On the representation of continuous functions of many vari-
ables by supetposition of continuous functions one variable andaddition, Doklady
Akademmi Nauk SSSE, 114 (1957), 953-956.

[7] H.M. Lee, Weighted pseudo almost periodic solutions of Hopfield artificial neural
networks with leakage delay terms, J. Chungcheong Math. Soc., 34 (2021), no. 3,
221-234.

https://www.sciencedirect.com/science/article/pii/S0362546X09006427
https://www.researchgate.net/publication/266216793_Superposition_operators_between_various_almost_periodic_function_spaces_and_applications
https://dl.acm.org/doi/abs/10.1007/s11063-020-10193-z
https://www.researchgate.net/publication/238860681_Existence_of_weighted_pseudo-almost_periodic_solutions_to_some_classes_of_differential_equations_with_S_p_-weighted_pseudo-almost_periodic_coefficients
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=22050&option_lang=eng
http://www.koreascience.or.kr/article/JAKO202123758835917.page


52 Hyun Mork Lee

[8] B. Li and Y. Li, Existence and Global Exponential Stability of Pseudo Almost Pe-
riodic Solution for Clifford-Valued Neutral High-Order Hopfield Neural Networks
With Leakage Delays, IEEE., (2019).

[9] Y. Li and X. Meng, Almost Automorphic Solutions for Quaternion-Valued Hop-
field Neural Networks with Mixed Time-Varying Delays and Leakage Delays, J.
Syst. Sci. Complex., 33 (2020), 100-121.

[10] M, Maqbul, Stepanov-almost periodic solutions of non-autonomous neutral func-
tional differential equations with functional delay, Mediterr. J. Math., 15 (2018),
no. 4.

[11] Y. Li and J. Xiang, Existence and global exponential stability of anti-periodic
solution for clifford-valued inertial cohengrossberg neural networks with delays,
Neuro computing, 332 (2019), no. 2, 259-269.

[12] Y. Xu, Weighted pseudo-almost periodic delayed cellular neural networks, Neural
Comput. Appl., 30 (2018), no. 10, 2453-2458.

[13] G. Rajchakit and R, Siraman, Robust passivity and stability analysis of uncer-
tain complex-valued impulsive neural networks with time-varing delays, Neural
Process. Lett., 53 (2021), no. 13, 581-606.

[14] S. Shen and Y. Li, Sp -Almost Periodic Solutions of Clifford-Valued Fuzzy Cellu-
lar Neural Networks with Time-Varying Delays, Neural Process. Lett., 51 (2020),
no. 2, 1749-1769.

[15] H. Wang and G. Wei, S. Huang, Impulsive disturbance on stability analysis of
delayed quaternion-valued neural networks, Appl. Math. Comptu., 390 (2021),
no. 12, 125680.

[16] G. Yang and W. Wan, Weighted Pseudo Almost Periodic Solutions for Cellu-
lar Neural Networks with Multi-proportional Delays, Neural Process. Lett., 49
(2019), no. 3, 1125-1138.

[17] Z. Zhao, Y. Chang and G.M. N’Guerekata, A new composition theorem for Sp-
weighted pseudoalmostperiodic functions and applications to semilinear differen-
tial equattions, Opuscula Mathematica. 31 (2011), no. 3, 457-474.

Hyun Mork Lee
Department of Applied Mathematics
Kongju National University
56, Gongjudaehak-ro, Gongju-si, Republic of Korea
E-mail : hmleigh@naver.com

https://www.researchgate.net/publication/336573106_Existence_and_Global_Exponential_Stability_of_Pseudo_Almost_Periodic_Solution_for_Clifford-_Valued_Neutral_High-Order_Hopfield_Neural_Networks_With_Leakage_Delays
https://www.researchgate.net/publication/335259519_Almost_Automorphic_Solutions_for_Quaternion-Valued_Hopfield_Neural_Networks_with_Mixed_Time-Varying_Delays_and_Leakage_Delays
https://www.researchgate.net/publication/338439046_SpSp-Almost_Periodic_Solutions_of_Clifford-Valued_Fuzzy_Cellular_Neural_Networks_with_Time-Varying_Delays
https://www.researchgate.net/publication/330032108_Existence_and_global_exponential_stability_of_anti-periodic_solution_for_Clifford-valued_inertial_Cohen-Grossberg_neural_networks_with_delays
https://www.researchgate.net/publication/312149253_Weighted_pseudo-almost_periodic_delayed_cellular_neural_networks
https://www.researchgate.net/publication/348206357_Robust_Passivity_and_Stability_Analysis_of_Uncertain_Complex-Valued_Impulsive_Neural_Networks_with_Time-Varying_Delays
https://www.researchgate.net/publication/346045903_Impulsive_disturbance_on_stability_analysis_of_delayed_quaternion-valued_neural_networks
https://dl.acm.org/doi/abs/10.1007/s11063-018-9851-3
https://www.researchgate.net/publication/228568093_THEOREM_FOR_Sp-WEIGHTED_PSEUDO_ALMOST_PERIODIC_FUNCTIONS_AND_APPLICATIONS_TO_SEMILINEAR_DIFFERENTIAL_EQUATIONS



