• Title/Summary/Keyword: weibull distribution

Search Result 1,009, Processing Time 0.029 seconds

Physical Habitat Characteristics of the Endangered Macroinvertebrate Koreoleptoxis nodifila (Martens, 1886) (Mollusca, Gastropoda) in South Korea (한국산 멸종위기 무척추동물 염주알다슬기 (연체동물문, 복족강)의 물리적 서식처 특성 )

  • Jin-Young Kim;Ye ji Kim;Ah Reum Kim;In-Seong Yoo;Hwang Kim;Dongsoo Kong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.145-155
    • /
    • 2022
  • Koreoleptoxis nodifila (Martens, 1886) is an endangered species only living in the central and north streams of South Korea. However, there is a lack of information on physical habitat characteristics of K. nodifila. We aimed to determine preference ranges for water depth, current velocity, streambed substrate of K. nodifila. The weibull model was used to estimate the habitat suitability based on distribution of individual abundance by physical factors. Optimal depth preferences ranged from 0.53~17.17 cm, current preferences ranged from 48.40~81.03 cm s-1 and substrate (𝜱m) preferences ranged from -4.36~ -2.26. Median values of central tendency were determined as follows: water depth 16.73 cm, current velocity 65.23 cm s-1, substrate -3.51. Mean values of central tendency were determined as follows: water depth 21.32 cm, current velocity 65.65 cm s-1, substrate -3.63. Mode values of central tendency were determined as follows: water depth 5.17 cm, current velocity 64.77 cm s-1, substrate -3.24. Based on the habitat suitability analysis, the microhabitat types of K. nodifila were determined as riffle and coarse-grained streambed.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Physical habitat characteristics of freshwater crayfish Cambaroides similis (Koelbel, 1892) (Arthropoda, Decapoda) in South Korea

  • Jin-Young Kim;Yong Ju Kwon;Ye Ji Kim;Yeong-Deok Han;Jung Soo Han;Chae Hui An;Yong Su Park;Dongsoo Kong
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.200-210
    • /
    • 2023
  • Background: Cambaroides similis is an endangered candidate species living in the stream of South Korea. Freshwater crayfish is known to decline rapidly not only domestically, but also internationally. Its decline is projected to be further exacerbated due to climate change. Understanding physical characteristics of the habitat is crucial for the conservation of an organism. However, comprehensive data regarding the distribution and physical habitat characteristics of C. similis are currently unavailable in South Korea. Thus, the objective of this study was to ascertain preferred ranges for water depth, current velocity, and streambed substrate of C. similis using Weibull model. Results: In this study, C. similis was found at 59 sites across 12 regions in South Korea. Its optimal water depth preferences ranged from 11.9 cm to 30.1 cm. Its current velocity preferences ranged from 9.8 cm s-1 to 29.1 cm s-1. Its substrate preferences ranged from -5.1 𝜱m to -2.5 𝜱m. Median values of central tendency were determined as follows: water depth of 21.4 cm, current velocity of 21.2 cm s-1, and substrate of -4.1 𝜱m. Mean values of central tendency were determined as follows: water depth of 21.8 cm, current velocity of 22.0 cm s-1, and substrate of -4.4 𝜱m. Mode values of central tendency were determined as follows: water depth of 21.7 cm, current velocity of 20.1 cm s-1, and substrate of -3.7 𝜱m. Conclusions: Based on habitat suitability analysis, physical microhabitat characteristics of C. similis within a stream were identified as Run section with coarse particle substrate, low water depth, and slow current velocity. Due to high sensitivity of these habitats to environmental changes, prioritized selection and assessment of threats should be carried out as a primary step.

Development of Stand Yield Table Based on Current Growth Characteristics of Chamaecyparis obtusa Stands (현실임분 생장특성에 의한 편백 임분수확표 개발)

  • Jung, Su Young;Lee, Kwang Soo;Lee, Ho Sang;Ji Bae, Eun;Park, Jun Hyung;Ko, Chi-Ung
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.477-483
    • /
    • 2020
  • We constructed a stand yield table for Chamaecyparis obtusa based on data from an actual forest. The previous stand yield table had a number of disadvantages because it was based on actual forest information. In the present study we used data from more than 200 sampling plots in a stand of Chamaecyparis obtusa. The analysis included theestimation, recovery and prediction of the distribution of values for diameter at breast height (DBH), and the result is a valuable process for the preparation ofstand yield tables. The DBH distribution model uses a Weibull function, and the site index (base age: 30 years), the standard for assessing forest productivity, was derived using the Chapman-Richards formula. Several estimation formulas for the preparation of the stand yield table were considered for the fitness index, and the optimal formula was chosen. The analysis shows that the site index is in the range of 10 to 18 in the Chamaecyparis obtusa stand. The estimated stand volume of each sample plot was found to have an accuracy of 62%. According to the residuals analysis, the stands showed even distribution around zero, which indicates that the results are useful in the field. Comparing the table constructed in this study to the existing stand yield table, we found that our table yielded comparatively higher values for growth. This is probably because the existing analysis data used a small amount of research data that did not properly reflect. We hope that the stand yield table of Chamaecyparis obtusa, a representative species of southern regions, will be widely used for forest management. As these forests stabilize and growth progresses, we plan to construct an additional yield table applicable to the production of developed stands.

Temperature-driven Models of Lipaphis erysimi (Hemiptera: Aphididae) Based on its Development and Fecundity on Cabbage in the Laboratory in Jeju, Korea (양배추에서 무테두리진딧물의 온도의존 발육 및 산자 단위모형)

  • Oh, Sung Oh;Kwon, Soon Hwa;Kim, Tae Ok;Park, Jeong Hoon;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • This study was conducted to develop temperature-driven models for a population model of turnip aphid, Lipaphis erysimi: nymphal development rate models and apterious adult's oviposition (larviparous) model. Nymphal development and the longevity and fecundity of adults were examined on cabbage at six constant temperatures (10, 15, 20, 25, 30, $35{\pm}1^{\circ}C$, 16L:8D). L. erysimi nymphs did not survive at $10^{\circ}C$. Development time of nymphs increased with increasing temperature up to $30^{\circ}C$ and thereafter slightly decreased, ranging from 18.5 d at $15^{\circ}C$ to 5.9 d at $30^{\circ}C$. The lower threshold temperature and thermal constant were estimated as $7.9^{\circ}C$ and 126.3 degree days, respectively. The nonlinear model of Lactin 2 fitted well for the relationship between the development rate and temperature of small (1+2 instar), large (3+4 instar) and total nymph (all instars). The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of L. erysimi. Adult longevity decreased as the temperature increased and ranged from 24.4 d at $20^{\circ}C$ to 16.4 d at $30.0^{\circ}C$ with abnormal longevity 18.2 d at $15^{\circ}C$, which was used to estimate adult aging rate model for the calculation of adult physiological age. L. erysimi showed a maximum fecundity of 91.6 eggs per female at $20^{\circ}C$. In this study, we provided three temperature-dependent components for an oviposition model of L. erysimi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.

Development of an Emergence Model for Overwintering Eggs of Metcalfa pruinosa (Hemiptera: Flatidae) (미국선녀벌레(Metcalfa pruinosa) (Hemiptera: Flatidae) 월동난 부화 예측 모델 개발)

  • Lee, Wonhoon;Park, Chang-Gyu;Seo, Bo Yoon;Lee, Sang-Ku
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.35-43
    • /
    • 2016
  • The temperature-dependent development of Metcalfa pruinosa overwintering eggs was investigated at ten constant temperatures (12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and $35{\pm}1^{\circ}C$, Relative Humidity 20~30%). All individuals collected before April 13, 2012 failed to develop into first instar larvae. In contrast, some individuals that were collected on April 11, 2013 successfully developed when reared under $20{\sim}32.5^{\circ}C$ temperature regimes. The developmental duration was shortest at $30^{\circ}C$ (13.3 days) and longest at $15^{\circ}C$ (49.6 days) in the fourth collected colony (April 26 2013). Developmental duration decreased with increasing temperature up to $30^{\circ}C$ and development was retarded at high-temperature regimes ($32.5^{\circ}C$). The lower developmental threshold was $10.1^{\circ}C$ and the thermal constant required to complete egg overwintering was 252DD. The Lactin 2 model provided the best statistical description of the relationship between temperature and the developmental rate of M. pruinosa overwintering eggs ($r^2=0.99$). The distribution of the developmental completion of overwintering eggs was well described by the 2-parameter Weibull function ($r^2=0.92$) based on the standardized development duration. However, the estimated cumulative 50% spring emergence dates of overwintering eggs were best predicted by poikilotherm rate model combined with the 2-parameter Weibull model (average difference of 1.7days between observed and estimated dates).

Temperature-dependent developmental models and fertility life table of the potato aphid Macrosiphum euphorbiae Thomas on eggplant (감자수염진딧물(Macrosiphum euphorbiae Thomas)의 온도발육모형과 출산생명표)

  • Jeon, Sung-Wook;Kim, Kang-Hyeok;Lee, Sang Guei;Lee, Yong Hwan;Park, Se Keun;Kang, Wee Soo;Park, Bueyong;Kim, Kwang-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.568-578
    • /
    • 2019
  • The nymphal development of the potato aphid, Macrosiphum euphorbiae (Thomas), was studied at seven constant temperatures (12.5, 15.0, 17.5, 20.0, 22.5, 25.0, and 27.5±1℃), 65±5% relative humidity (RH), and 16:8 h light/dark photoperiods. The developmental investigation of M. euphorbiae was separated into two steps, the 1st through 2nd and the 3rd through 4th stages. The mortality was under 10% at six temperatures. However, it was 53.0% at 27.5℃. The developmental time of the entire nymph stage was 15.5 days at 15.0℃, 6.7 days at 25.0℃, and 9.7 days at 27.5℃. In the immature stage, the lower threshold temperature of the larvae was 2.6℃ and the thermal constant was 144.5 DD. In our analysis of the temperature-development experiment, the Logan-6 model equation was most appropriate for the non-linear regression models (r2=0.99). When the distribution completion model of each development stage of M. euphorbiae larvae was applied to the 2-parameter and 3-parameter Weibull functions, each of the model's goodness of fit was very similar (r2=0.92 and 0.93, respectively). The adult longevity decreased as the temperature increased but the total fecundity of the females at each temperature was highest at 20℃. The life table parameters were calculated using the whole lifespan periods of M. euphorbiae at the above six temperatures. The net reproduction rate (R0) was highest at 20.0℃(63.2). The intrinsic rate of increase (rm) was highest at 25℃(1.393). The finite rate of doubling time (Dt) was the shortest at 25.0℃(2.091). The finite rate of increase (λ) was also the highest at 25.0℃(1.393). The mean generation time(T) was the shortest at 25.0℃(9.929).

Temperature-dependent Development Model of the Striped Fruit Fly, Bactrocera scutellata (Hendel)(Diptera: Tephritidae) (호박꽃과실파리 온도 발육모형)

  • Jeon, Sung-Wook;Cho, Myoung-Rae;Kim, Yang-Pyo;Lee, Sang-Guei;Kim, So-Hyung;Yu, Jin;Lee, Jong-Jin;Hwang, Chang-Yeon
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.373-378
    • /
    • 2011
  • The striped fruit fly, Bactrocera scutellata, damages pumpkin and other cucurbitaceous plants. The developmental period of each stage was measured at seven constant temperatures (15, 18, 21, 24, 27, 30, and $33{\pm}1.0^{\circ}C$). The developmental time of eggs ranged from 4.2 days at $15^{\circ}C$ to 0.9 days at $33^{\circ}C$. The developmental period of larvae was 4.2 days at $15^{\circ}C$, and slowed in temperatures above $27^{\circ}C$. The developmental period of pupa was 21.5 days at $15^{\circ}C$ and 7.6 days at $33^{\circ}C$. The mortality of eggs was 17.1% at $15^{\circ}C$ and 22.9% at $33^{\circ}C$, Larval mortalities (1st, 2nd, 3rd) were 24.1, 27.3 and 18.2%, respectively, at $15^{\circ}C$, Pupal mortalities were 18.2% at $15^{\circ}C$ and 23.1% at $33^{\circ}C$. The relationship between developmental rate and temperature fit both a linear model and a nonlinear model. The lower threshold temperatures of eggs, larvae, and pupae were 12.5, 10.7, and $6.3^{\circ}C$, respectively, and threshold temperature of the total immature period was $8.5^{\circ}C$. The thermal constants required to complete the egg, larval, and pupal stages were 33.2, 118.3, and 181.2 DD, respectively. The distribution of each development stages was described by a 3-parameter Weibull function.

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.