DOI QR코드

DOI QR Code

Physical habitat characteristics of freshwater crayfish Cambaroides similis (Koelbel, 1892) (Arthropoda, Decapoda) in South Korea

  • Jin-Young Kim (Research Center for Endangered Species, National Institute of Ecology) ;
  • Yong Ju Kwon (Department of Life Science, Kyonggi University) ;
  • Ye Ji Kim (Department of Life Science, Kyonggi University) ;
  • Yeong-Deok Han (Research Center for Endangered Species, National Institute of Ecology) ;
  • Jung Soo Han (Research Center for Endangered Species, National Institute of Ecology) ;
  • Chae Hui An (Research Center for Endangered Species, National Institute of Ecology) ;
  • Yong Su Park (Research Center for Endangered Species, National Institute of Ecology) ;
  • Dongsoo Kong (Department of Life Science, Kyonggi University)
  • 투고 : 2023.08.07
  • 심사 : 2023.11.14
  • 발행 : 2023.12.31

초록

Background: Cambaroides similis is an endangered candidate species living in the stream of South Korea. Freshwater crayfish is known to decline rapidly not only domestically, but also internationally. Its decline is projected to be further exacerbated due to climate change. Understanding physical characteristics of the habitat is crucial for the conservation of an organism. However, comprehensive data regarding the distribution and physical habitat characteristics of C. similis are currently unavailable in South Korea. Thus, the objective of this study was to ascertain preferred ranges for water depth, current velocity, and streambed substrate of C. similis using Weibull model. Results: In this study, C. similis was found at 59 sites across 12 regions in South Korea. Its optimal water depth preferences ranged from 11.9 cm to 30.1 cm. Its current velocity preferences ranged from 9.8 cm s-1 to 29.1 cm s-1. Its substrate preferences ranged from -5.1 𝜱m to -2.5 𝜱m. Median values of central tendency were determined as follows: water depth of 21.4 cm, current velocity of 21.2 cm s-1, and substrate of -4.1 𝜱m. Mean values of central tendency were determined as follows: water depth of 21.8 cm, current velocity of 22.0 cm s-1, and substrate of -4.4 𝜱m. Mode values of central tendency were determined as follows: water depth of 21.7 cm, current velocity of 20.1 cm s-1, and substrate of -3.7 𝜱m. Conclusions: Based on habitat suitability analysis, physical microhabitat characteristics of C. similis within a stream were identified as Run section with coarse particle substrate, low water depth, and slow current velocity. Due to high sensitivity of these habitats to environmental changes, prioritized selection and assessment of threats should be carried out as a primary step.

키워드

과제정보

This study was supported by 'survey on endangered candidate species (NIE-Outsourced Research-2023-103)' funded by the Ministry of Environment.

참고문헌

  1. Ahmadi-Nedushan B, St-Hilaire A, Berube M, Robichaud E, Thiemonge N, Bobee B. A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Res Applic. 2006;22(5):503-23. https://doi.org/10.1002/rra.918 
  2. Ahn DH, Park MH, Jung JH, Oh MJ, Kim S, Jung J, et al. Isolation and characterization of microsatellite loci in the Korean crayfish, Cambaroides similis and application to natural population analysis. Anim Cells and Syst. 2011;15(1):37-43. https://doi.org/10.1080/19768354.2011.555137 
  3. Appelberg M. The crayfish Astacus astacus L. in acid and neutralized environments [PhD dissertation]. Uppsala: Uppsala University; 1986.
  4. Arrhenius O. Species and area. J Ecol. 1921;9(1):95-9. https://doi.org/10.2307/2255763 
  5. Bovee KD. Development and evaluation of habitat suitability criteria for use in the instream flow incremental methodology. Instream flow information paper #21. Washington, D.C.: U.S. Department of the Interior Fish and Wildlife Service; 1986. 
  6. Church M. Geomorphic thresholds in riverine landscapes. Freshw Biol. 2002;47(4):541-57. https://doi.org/10.1046/j.1365-2427.2002.00919.x 
  7. Colby BR. Scour and fill in sand-bed streams. Geological survey professional paper 462-D. Washington, D.C.: U.S. Government Printing Office; 1964. 
  8. Contreras-Balderas S, de Lourdes Lozano-Vilano M. Extinction of most Sandia and Potosi valleys (Nuevo Leon, Mexico) endemic pupfishes, crayfishes and snails. Ichthyol Explor Freshw. 1996;7(1):33-40. 
  9. Craig DA. Some of what you should know about water or, K.I.S.S.* for hydrodynamics (*keeping it stupidly simple). Bull N Am Benthol Soc. 1987;4(2):178-82. 
  10. Cummins KW. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am Midl Nat. 1962;67(2):477-504. https://doi.org/10.2307/2422722 
  11. Dajoz R. Precis d'ecologie. Paris: Dunod, Gauthier-Villars; 1975.
  12. Flather C. Fitting species-accumulation functions and assessing regional land use impacts on avian diversity. J Biogeogr. 1996;23(2):155-68. https://doi.org/10.1046/j.1365-2699.1996.00980.x 
  13. France RL, Collins NC. Extirpation of crayfish in a lake affected by longrange anthropogenic acidification. Conserv Biol. 1993;7:184-8. https://doi.org/10.1046/j.1523-1739.1993.07010184.x 
  14. Gleason HA. On the relation between species and area. Ecology. 1922;3(2):158-62. https://doi.org/10.2307/1929150 
  15. Hernandez-Suarez JS, Nejadhashemi AP. A review of macroinvertebrateand fish-based stream health modelling techniques. Ecohydrology. 2018;11(8):e2022. https://doi.org/10.1002/eco.2022 
  16. Jung JH, Kim MS, Ahn DH, Min GS. Growth rate, sex ratio, age structure and mating period of Korean crayfish Cambaroides similis natural population. J Aquac. 2009;22(1):16-22. 
  17. Kawai T, Min GS. Re-examination of type material of Cambaroides similis (Koelbel, 1892) (Decapoda: Cambaridae) with a lectotype designation, re-description, and evaluation of geographical variation. Proc Biol Soc Wash. 2005;118(4):777-93. https://doi.org/10.2988/0006-324X(2005)118[777:ROTMOC]2.0.CO;2 
  18. Kim JH. Hydraulic habitat analysis of benthic macroinvertebrates at Gapyeong stream. J Korea Water Resour Assoc. 2014;47(1):63-70. https://doi.org/10.3741/JKWRA.2014.47.1.63 
  19. Kim J, Kim AR, Kong D. Classification of microhabitats based on habitat orientation groups of benthic macroinvertebrate communities. J Korean Soc Water Environ. 2017;33(6):728-35. https://doi.org/10.15681/KSWE.2017.33.6.728 
  20. Kim JY, Kim Y, Kim AR, Yoo IS, Kim H, Kong D. Physical habitat characteristics of the endangered macroinvertebrate Koreoleptoxis nodifila (Martens, 1886) (Mollusca, Gastropoda) in South Korea. Korean J Ecol Environ. 2022;55(2):145-55. https://doi.org/10.11614/KSL.2022.55.2.145 
  21. Kim S, Park MH, Jung JH, Ahn DH, Sultana T, Kim S, et al. The mitochondrial genomes of Cambaroides similis and Procambarus clarkii (Decapoda: Astacidea: Cambaridae): the phylogenetic implications for Reptantia. Zool Scr. 2012;41(3):281-92. https://doi.org/10.1111/j.1463-6409.2012.00534.x 
  22. Kim YJ, Kong D. Estimation on physical habitat suitability of benthic macroinvertebrates in the Hwayang Stream. J Korean Soc Water Environ. 2018;34(1):10-25. https://doi.org/10.15681/KSWE.2017.34.1.10. 
  23. Ko HS, Kawai T. Postembryonic development of the Korean crayfish, Cambaroides similis (Decapoda, Cambaridae) reared in the laboratory. Korean J Syst Zool. 2001;17(1):35-47. 
  24. Kong D, Kang B. Estimation on altitudinal spectrum of suitability for four species of the mayfly genus Ephemera (Ephemeroptera: Ephemeridae) using probability distribution models. J Korean Soc Water Environ. 2023;39(4):302-15. 
  25. Kong D, Kim AR. Analysis on the relationship between number of species and survey area of benthic macroinvertebrates using Weibull distribution function. J Korean Soc Water Environ. 2015;31(2):142-50. https://doi.org/10.15681/KSWE.2015.31.2.142. 
  26. Kong D, Kim AR. Estimation on the physical habitat suitability of benthic macroinvertebrates in the Gapyeong stream. J Korean Soc Water Environ. 2017;33(3):311-25. https://doi.org/10.15681/KSWE.2017.33.3.311 
  27. Kong D, Kim JY. Development of benthic macroinvertebrates streambed index (BMSI) for bioassessment of stream physical habitat. J Korean Soc Water Environ. 2016;32(1):1-14. https://doi.org/10.15681/KSWE.2016.32.1.1 
  28. Kong D, Son SH, Kim JY, Kim P, Kwon Y, Kim J, et al. Estimation of habitat suitability index of fish species in the Gapyeong stream. J Korean Soc Water Environ. 2017;33(6):626-39. https://doi.org/10.15681/KSWE.2017.33.6.626 
  29. Kylin H. uber Begriffsbildung und statistik in der pflanzensoziologie. Bot Not. 1926:81-180. Swedish. 
  30. Lee DS, Park YS. Evaluation of potential distribution area of the red swamp crayfish (Procambarus clarkia) in South Korea. Korean J Ecol Environ. 2019;52(4):340-7. https://doi.org/10.11614/KSL.2019.52.4.340 
  31. Loureiro TG, Anastacio PMSG, Araujo PB, Souty-Grosset C, Almerao MP. Red swamp crayfish: biology, ecology and invasion - an overview. Nauplius. 2015;23(1):1-9. https://doi.org/10.1590/S0104-64972014002214 
  32. Meyer KM, Gimpel K, Brandl R. Viability analysis of endangered crayfish populations. J Zool. 2007;273(4):364-71. https://doi.org/10.1111/j.1469-7998.2007.00336.x 
  33. Nakata K, Hamano T, Hayashi K, Kawai T. Lethal limits of high temperature for two crayfishes, the native species Cambaroides japonicus and the alien species Pacifastacus leniusculus in Japan. Fish Sci. 2002;68(4):763-7. https://doi.org/10.1046/j.1444-2906.2002.00491.x 
  34. Orth DJ, Maughan OE. Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia. 1983;106(2):157-68. https://doi.org/10.1007/BF00006748 
  35. Pan BZ, Wang ZY, Li ZW, Lu YJ, Yang WJ, Li YP. Macroinvertebrate assemblages in relation to environments in the West River, with implications for management of rivers affected by channel regulation projects. Quat Int. 2015;384:180-5. https://doi.org/10.1016/j.quaint.2013.08.012 
  36. Preston FW. The commonness, and rarity, of species. Ecology. 1948; 29(3):254-83. https://doi.org/10.2307/1930989 
  37. Preston FW. The canonical distribution of commonness and rarity: part I. Ecology. 1962;43(2):185-215. https://doi.org/10.2307/1931976 
  38. Reynolds JD. Growth and reproduction. In: Holdich DM, editor. Biology of freshwater crayfish. Ames: Wiley-Blackwell; 2002. p. 151-91.
  39. Shepard FP. Nomenclature based on sand-silt-clay ratios. J Sediment Res. 1954;24(3):151-8. https://doi.org/10.1306/d4269774-2b26-11d7-8648000102c1865d 
  40. Song JH, Dai F, Bai X, Kim TI, Yang HJ, Kim TS, et al. Recent incidence of Paragonimus westermani Metacercariae in freshwater crayfish, Cambaroides similis, from two enzootic sites in Jeollanam-do, Korea. Korean J Parasitol. 2017;55(3):347-50. https://doi.org/10.3347/kjp.2017.55.3.347 
  41. Vadas RL Jr, Orth DJ. Formulation of habitat suitability models for stream fish guilds: do the standard methods work? Trans Am Fish Soc. 2001;130(2):217-35. https://doi.org/10.1577/1548-8659(2001)1 30%3C0217:FOHSMF%3E2.0.CO;2 
  42. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. The river continuum concept. Can J Fish Aquat Sci. 1980;37(1):130-7. https://doi.org/10.1139/f80-017 
  43. Vismara R, Azzellino A, Bosi R, Crosa G, Gentili G. Habitat suitability curves for brown trout (Salmo trutta fario L.) in the River Adda, Northern Italy: comparing univariate and multivariate approaches. Regul Rivers Res Manag. 2001;17(1):37-50. https://doi.org/10.1002/1099-1646(200101/02)17:1%3C37::AID-RRR606%3E3.0.CO;2-Q 
  44. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18(3):293-7. https://doi.org/10.1115/1.4010337