• Title/Summary/Keyword: web shear

Search Result 353, Processing Time 0.019 seconds

Evaluation of the Maximum Yield Strength of Steel Stirrups and Shear Behavior of RC Beams (철근콘크리트 보의 전단보강철근의 최대 항복강도 및 전단거동 평가)

  • Lee, Jung-Yoon;Choi, Im-Jun;Kang, Ji-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.711-718
    • /
    • 2010
  • The requirement of the maximum yield strength of shear reinforcement in the KCI-07 code is quite different to those in the ACI-08 code, EC2-02, CSA-04, and JSCE-04 codes. Eighteen RC beams having high strength shear reinforcement were tested. Test results indicated that even if the yield strength of shear reinforcement in beams was much greater than the maximum yield strength required by the KCI-07 design code, the shear reinforcement of these beams reached their yield strains. Furthermore, the shear strengths of tested beams increased almost linearly with the increase of the amount of shear reinforcement. In addition, larger numbers of diagonal cracks developed in the web of the beam having greater yield strength than the beams having lower yield strength of shear reinforcement. The maximum crack width of the beam having high strength shear reinforcement was approximately the same to the crack with of the beam having normal strength shear reinforcement.

Initial Shear Strength of Hollow Sectional Columns Subjected to Lateral Force (횡하중을 받는 RC 중공단면 기둥의 초기전단강도)

  • Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.1-14
    • /
    • 2009
  • Ductility-based seismic design is strongly required for the rational and cost-effective design of RC piers, and a reliable evaluation of shear strength is indispensable for its success. Unlike the flexural behavior of RC columns, shear behavior is highly complex, due to its many effects such as size, aspect ratio, axial force, ductility and so on. To address this, many design and empirical equations have been proposed considering these effects. However, these equations show significant differences in their evaluation of the initial shear strength, and the reduction in strength with the increase of ductility. In this study, the characteristics of initial shear strength of hollow sectional columns were investigated using experiments with the parameters of aspect ratios, void ratios, web area ratios and load patterns. The test results were analyzed through a comparison with the values predicted by empirical equations. On the basis of the mechanical characteristics and test results, a new empirical equation was proposed, and its validity was assessed.

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.

An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck (초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가)

  • Yoon, Ki Yong;Kim, Sang Seup;Han, Deuk Cheon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.519-528
    • /
    • 2008
  • A simple steel-concrete composite deck is developed for preventing the lateral torsional buckling of girders that are under construction and for reducing the term of works using H-shaped rolled beams as bridge girders. A new type of shear connectors is also developed for the composite behavior between a simple steel-concrete composite deck and the rolled beams by the connecting conditions between the deck and the girders. One is a connector bolt that is lengthened and split or tightened with two nuts and the other is an I-shaped rolled beam welded on a steel plate with a number of holes punched through the web. In this study, to estimate the shear strength of those shear connectors the push-out tests are performed and the test results are compared with that of the previous studies and the codes. The result of the push-out tests of the connector bolts showed that the shear performance is similar to that of the stud connector and revealed that the equation for the shear strength in the Korean Specification of Highway Bridge overestimates the shear capacity of the connector bolt whose diameter is larger than 19mm. From the push-out tests of punched I-shaped rolled beams with varying welding amounts, with the small amount of welding, shear capacity is governed by the shear capacity of welding. On the other hand, shear capacity is governed by the size of the punched I-shaped rolled beams, regardless of the amount of welding.

Evaluation of the Effective Width and Flexural Strength of the T-Stalled Walls (T형 벽체의 유효 폭 및 휨강도 평가)

  • 양지수;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.796-803
    • /
    • 2002
  • T-shaped walls have different strength, stiffness and ductility in the two opposite directions parallel to the web when subjected to horizontal in-plane loads. When the flange is in tension, the extent that the flange reinforcement contributes to the flexural strength will be subjected to shear-lag effect. Because of this shear-lag effect, the flange may not participate fully in the action with the web, and the effective flange width is needed for predicting the actual strength and stiffness of structures. The objective of this paper is to evaluate the effective flange width and actual strength of the T-shaped wall with Korean code specified detailing of the wall web. Three specimens were tested with cyclic lateral loading applied at top of the wall. A constant axial load of approximately 0.1f$\_$ck/$.$A$\_$g/ is maintained during the testing. Test results show that the effective flange width increases with increasing drift level, such that the entire overhanging flange of h/3 is effective at the maximum strength level. Therefore, the use of PCI or KBC(Korean Building Code) value of h/10 is unconservative with respect to detailing at the wall web boundary.

Design and Safety Control in Construction Stage of Prestressed Concrete Box Girder Bridge with Corrugated Steel Web (파형강판 PSC 박스거더 교량의 설계 및 시공중 안전관리)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.87-97
    • /
    • 2008
  • The Ilsun Bridge is the world's longest box girder bridge(801m) with corrugated steel webs and has the widest width($21.2{\sim}30.9m$: tri-cellular cross section) among these kinds of composite girder bridges. It has fourteen spans(50m, 10 at 60m, 50m, 2 at 50.5m) where twelve spans are erected by the incremental launching method and two spans by full staging method. Special topics related to the structural safety of prestressed concrete box girder bridge with corrugated steel web in construction stage and service were reviewed. Investigations focus on the span-to-depth ratio, shear stress of corrugated steel webs and optimization of tile length of steel launching nose. The span-to-depth ratio of Ilsun bridge has been found to be well-planned while the corrugated steel web has been designed highly conservative and it has been observed that the conventional nose-deck interaction equation do not fit well with corrugated steel web bridges. As a result, detailed construction stage analysis was performed to check the stress levels and the safety of preceding design conditions. Finally, from the design review of Ilsun bridge, this study suggests optimal design issues which should be of interest in designing a prestressed concrete box girder bridge with corrugated steel webs.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.

Shear Performance of Board-type Two-way Voided Slab (일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가)

  • Choi, Hyeon-Min;Park, Tae-Won;Paik, In-Kwan;Kim, Je-Sub;Han, Ju-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2015
  • Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

A mathematical steel panel zone model for flanged cruciform columns

  • Saffari, Hamed;Sarfarazi, Sina;Fakhraddini, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.851-867
    • /
    • 2016
  • Cruciform sections are an appropriate option for columns of orthogonal moment resisting frames for equal bending strength and stiffness about two main axes and the implementation is easier for continuity plates. These columns consist of two I-shaped sections, so that one of them is cut out in middle and two generated T-shaped sections be welded into I-shaped profile. Furthermore, in steel moment frames, unbalance moment at the beam-column connection leads to shear deformation in panel zone. Most of the obtained relations for panel zone strength derived from experimental and analytical results are on I-shaped columns with almost thin flanges. In this paper, a parametric study has been carried out using Finite Element Method (FEM) with effective parameters at the panel zone behavior. These parameters consist of column flange thickness, column web thickness, and thickness of continuity plates. Additionally, a mathematical model has been suggested to determine strength of cruciform column panel zone and has been shown its accuracy and efficiency.