DOI QR코드

DOI QR Code

Shear Performance of Board-type Two-way Voided Slab

일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가

  • Choi, Hyeon-Min (Department of Architectural Engineering, Dan-kook University) ;
  • Park, Tae-Won (Department of Architectural Engineering, Dan-kook University) ;
  • Paik, In-Kwan (Department of Architectural Engineering, Dan-kook University) ;
  • Kim, Je-Sub (Department of Architectural Engineering, Dan-kook University) ;
  • Han, Ju-Yeon (Department of Architectural Engineering, Dan-kook University)
  • Received : 2015.05.28
  • Accepted : 2015.08.17
  • Published : 2015.12.30

Abstract

Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

최근에 사회적 요구와 경제적인 요구로 인해서 장스팬 건축물이 증가하고 있다. 그러나 장스팬 건축물은 자중이 증가하여 처짐 진동 소음의 문제가 있다. 이러한 문제를 해결하기 위하여 판형중공슬래브가 제안되었는데 이는 슬래브 안에 일체형 중공재를 삽입함으로써 자중이 감소된 슬래브를 만들 수 있다. 이 시스템은 휨성능에는 영향을 받지 않는 단면을 중공재로 대체함으로써 슬래브의 강성은 그대로 유지하면서, 소음 및 처짐을 줄이고 자중을 감소할 수 있는 장점이 있다. 그러나 이 시스템의 경우 부력에 의해 일체화된 중공재가 상승한다는 단점이 있다. 따라서 판형 중공재 고정장치를 개발하였고, 또한 이를 삽입한 판형중공재의 성능을 알아보기 위하여 7개의 실험체를 제작하여 그 성능을 알아보고 그 결과 나타난 수평전단파괴에 대해서 예측을 할 수 있는 식을 제안하였다.

Keywords

References

  1. Ministry of Land, Infrastructure and Transport and Maritime Affairs (Building Planning Division). Floor Impact Sound Insulation structure admit and management criteria in Apartment Houses Enforcement, Act No. 2013-889, 2014, 044-201-3370.
  2. Chung, J. H., Choi, H. K., Lee, S. C., and Choi, C. S., Flexural Strength and Stiffness of Biaxial Hollow Slab with Donut Type Hollow Sphere, Journal of the Architectural Institute of Korea, Vol.30, No.5, 2014, pp.3-11.
  3. Troels Brondum-Nielsen, "Ultimate Flexural Capacity of Cracked Ploygonal Concrete Sections with Circular Holes Under Biaxial Bending", ACI Structural Journal, Vol.84, No.3, 1987, pp.212-215.
  4. Troels Brondum-Nielsen, "Serviceability Limit State Analysis of Concrete Sections with Circular Holes Under Biaxial Bending", ACI Structural Journal, Vol.84, No.4, 1987, pp.293-295.
  5. Tamon Ueda and Boonchai Stitmannaithum, "Shear Strength of Precast Prestressed Hollow Slabs with Concrete Topping", ACI Structural Journal, Vol.88, No.4, 1991, pp.402-410.
  6. Lin, Y., "Design of Prestressed Hollow Core Slabs with Reference to Web Shear Failure", Journal of Structural Engineering, ASCE, Vol.120, No.9, 1994, pp.2675-2696. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2675)
  7. Matti, P., and Heli, K., "Shear Resistance of PHC Slabs Supported on Beams. I: Tests", Journal of Structural Engineering, ASCE, Vol.124, No.9, 1998, pp.1050-1061. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1050)
  8. Ulf Arne Girhammar and Matti Pajari, "Tests and Analysis on Shear Strength of Composite Slabs of Hollow Core Units and Concrete Topping", Construction and Building Materials, Vol.22, No.8, 2008, pp.1708-1722. https://doi.org/10.1016/j.conbuildmat.2007.05.013
  9. Aldejohann, M., and Schnellenbach-Held, M., "Investigations on the Shear Capacity of Biaxial Hollow Slabs-Test Results and Evaluation", Darmstadt Concrete, Vol.18, 2003, pp.1-11.
  10. Kim, S. M., Jang, T. Y., and Kim, S. S., "Structural Performance Tests of Two-way Void Slabs", Journal of the Architectural Institute of Korea, Vol.25, No.8, 2009, pp.35-42.
  11. Kang, J. Y., Kim, H. G., Joo, E. H., Kim, S. M., Kim, H. S. and Shin, Y. S., "Experimental Studies on the Effect of Construction Methods on Shear Strength of Hollow Core Slab", Proceedings of the Korea Concrete Institude, Vol.23, No.1, 2011, pp.15-16.
  12. Martina, S., and Markus, A., Biaxial Hollow core slabs - theory and tests, Bentonwerk, Fertigteil Technic, 2005, section 50-59.