• Title/Summary/Keyword: wave bifurcation

Search Result 24, Processing Time 0.024 seconds

On the Origin of Oscillatory Instabilities in Diffusion Flames (확산화염의 진동불안성의 기원에 대해서)

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

Fractal basin boundary of quasi-periodic motions of a circular plate (원판의 준주기운동의 프랙털 흡인경계)

  • Park, Hae-Dong;Lee, Won-Kyoun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.696-701
    • /
    • 2005
  • 조화가진력이 작용하는 고정경계를 가진 완전원판의 비선형 진동에 대한 응답특성을 연구하였다. 원판의 비대칭모드의 고유진동수 근처에 가진주파수가 작용하는 주공진에서의 응답은 정상파(standing wave)뿐만 아니라 진행파(traveling wave)가 존재 한다고 알려져 있다. 주공진 근처의 정상상태 응답곡선에서 최대한 5개의 안정한 응답이 존재하는 것으로 밝혀졌으며, 이들은 1개의 정상파와 4개의 진행파로 나타난다. 이 진행파 중 2개는 가진진동수가 변화함에 따라 Hope분기에 의해 안정성을 잃은 후 주기배가운동을 거쳐 흔돈운동에 이르게 된다. 초기조건에 의해 각각의 끌개(attractor)에 흡인되는 흡인영역의 경계를 주평면의 개념을 통하여 구하였으며, 가진진동수가 변화함에 따라 안정한 해가 혼돈운동에 이르는 과정에 대해 흡인영역의 경계가 변화되는 특성을 관찰하였으며, 흡인영역 경계에 대한 프랙털 차원(fractal dimension)을 계산하였다.

  • PDF

Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite (회전하는 금속복합재료 혼합적층 원통쉘의 진동해석)

  • Lee, Young-Sin;Kim, Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.

Simply supported boundary condition for bifurcation analysis of functionally graded material: Thickness control by exponential fraction law

  • Shadi Alghaffari;Muzamal Hussain;Mohamed A. Khadimallah;Faisal Al Thobiani;Hussain Talat Sulaimani
    • Advances in nano research
    • /
    • v.14 no.4
    • /
    • pp.303-312
    • /
    • 2023
  • In this study, the bifurcation analysis of functionally graded material is done using exponential volume fraction law. Shell theory of Love is used for vibration of shell. The Galerkin's method is applied for the formation of three equations in eigen value form. This eigen form gives the frequencies using the computer software MATLAB. The variations of natural frequencies (Hz) for Type-I and Type-II functionally graded cylindrical shells are plotted for exponential volume fraction law. The behavior of exponent of volume fraction law is seen for three different values. Moreover, the frequency variations of Type-I and -II clamped simply supported FG cylindrical shell with different positions of ring supports against the circumferential wave number are investigated. The procedure adopted here enables to study vibration for any boundary condition but for brevity, numerical results for a cylindrical shell with clamped simply supported edge condition are obtained and their analysis with regard various physical parameters is done.

CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE (분지관 내 물체 주위 맥동류에 대한 CFD 해석)

  • Hwang, D.Y.;Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.183-190
    • /
    • 2009
  • The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the object, the effects of flow on the drag were considered. For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such as the wall shear stress (WSS) and to compute the drag of the solid object.

  • PDF

Effects of the Length and Diameter of Shock Tube on the Shock Train Phenomenon (충격파관의 길이와 직경이 Shock Train 현상에 미치는 영향)

  • Kim, Dong Wook;Kim, Tae Ho;Yoon, Young Bin;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.615-622
    • /
    • 2017
  • A normal shock wave is initially formed in the shock tube that migrates towards the closed end of the tube, which, in turn, leads to the reflection of shock. Due to the interaction of the reflected shock with the boundary layer, bifurcation of the shock wave takes place. A shock train will be generated after the bifurcated shock wave approaches the contact surface. Until now, only a few studies have been conducted to investigate this shock train phenomenon inside the shock tube. For the present study, a CFD analysis has been performed on a two dimensional axisymmetric model of a shock tube using unsteady, compressible Navier-Stokes equations. In order to investigate the detailed characteristics of the shock train phenomenon, quantitative studies have been performed by varying shock tube length, diameter under fixed diaphragm, and pressure ratio inside a shock tube.

FLOW INSTABILITY IN A BAFFLED CHANNEL FLOW (배플이 부착된 채널 유동의 불안정성)

  • Kang, C.;Yang, K.S.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Flow instability is investigated in a two-dimensional channel with thin baffles placed symmetrically in the vertical direction and periodically in the streamwise dircetion. At low Reynolds numbers, the flow is steady and symmetric. Above a critical Reynolds number, the steady flow undergoes a Hopf bifurcation leading to unsteady periodic flow. As Reynolds number further increases, we observe the onset of secondary instability. At high Reynolds numbers, the two-dimensional periodic flow becomes three dimmensional. To identify the onset of secondary instability, we carry out Floquet stability analysis. We obseved the transition to 3D flow at a Reynolds number of about 125. Also, we computed dominant spanwise wavenumbers near the critical Reynolds number, and visualized vortical structures associated with the most unstable spanwise wave.

Secondary buckling analysis of spherical caps

  • Kato, Shiro;Chiba, Yoshinao;Mutoh, Itaru
    • Structural Engineering and Mechanics
    • /
    • v.5 no.6
    • /
    • pp.715-728
    • /
    • 1997
  • The aim of this paper is to investigate the secondary buckling behaviour and mode-coupling of spherical caps under uniformly external pressure. The analysis makes use of a rotational finite shell element on the basis of strain-displacement relations according to Koiter's shell theory (Small Finite Deflections). The post-buckling behaviours after a bifurcation point are analyzed precisely by considering multi-mode coupling between several higher order harmonic wave numbers: and on the way of post-buckling path the positive definiteness of incremental stiffness matrix of uncoupled modes is examined step by step. The secondary buckling point that has zero eigen-value of incremental stiffness matrix and the corresponding secondary mode are obtained, moreover, the secondary post-buckling path is traced.

Scale-dependent buckling of embedded thermo-electro-magneto-elastic cylindrical nano-shells with different edge conditions

  • Yifei Gui;Honglei Hu
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.601-613
    • /
    • 2024
  • A new analytical buckling solution of a thermo-electro-magneto-elastic (TEME) cylindrical nano-shell made of BiTiO3-CoFe2O4 materials is obtained based on Hamiltonian approach. The Winkler and Pasternak elastic foundations as well as thermo-electro-magneto-mechanical loadings are applied, and two different types of edge conditions are taken into the investigation. According to nonlocal strain gradient theory (NSGT) and surface elasticity theory in conjunction with the Kirchhoff-Love theory, governing equations of the nano-shell are acquired, and the buckling bifurcation condition is obtained by adopting the Navier's method. The detailed parameter study is conducted to investigate the effects of axial and circumferential wave numbers, scale parameters, elastic foundations, edge conditions and thermo-electro-magnetic loadings on the buckling behavior of the nano-shell. The proposed model can be applied in design and analysis of TEME nano components with multi-field coupled behavior, multiple edge conditions and scale effect.

PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS (CFD를 이용한 분지관 비뉴턴 해석)

  • Hwang, D.;Yoo, S.S.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF