DOI QR코드

DOI QR Code

Effects of the Length and Diameter of Shock Tube on the Shock Train Phenomenon

충격파관의 길이와 직경이 Shock Train 현상에 미치는 영향

  • Kim, Dong Wook (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Tae Ho (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Yoon, Young Bin (Dept. of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Kim, Heuy Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 김동욱 (안동대학교 기계공학과) ;
  • 김태호 (안동대학교 기계공학과) ;
  • 윤영빈 (서울대학교 기계항공공학부) ;
  • 김희동 (안동대학교 기계공학과)
  • Received : 2017.04.03
  • Accepted : 2017.06.27
  • Published : 2017.09.01

Abstract

A normal shock wave is initially formed in the shock tube that migrates towards the closed end of the tube, which, in turn, leads to the reflection of shock. Due to the interaction of the reflected shock with the boundary layer, bifurcation of the shock wave takes place. A shock train will be generated after the bifurcated shock wave approaches the contact surface. Until now, only a few studies have been conducted to investigate this shock train phenomenon inside the shock tube. For the present study, a CFD analysis has been performed on a two dimensional axisymmetric model of a shock tube using unsteady, compressible Navier-Stokes equations. In order to investigate the detailed characteristics of the shock train phenomenon, quantitative studies have been performed by varying shock tube length, diameter under fixed diaphragm, and pressure ratio inside a shock tube.

충격파관에서 발생하는 충격파는 저압관단으로 전파하며, 관단에서 반사한다. 반사 충격파와 경계층의 간섭으로 반사 충격파에 분지가 발생하게 되고, 분지한 반사 충격파는 접촉면과 간섭하며, shock train이 발생하게 된다. 그러나 충격파관에서 발생하는 shock train 현상에 대한 연구는 미흡한 실정이다. 본 연구에서는 2차원 축대칭 충격파관을 사용하여 비정상, 압축성 Navier-Stokes 방정식을 적용한 수치해석을 수행하였으며, shock train의 상세한 특성을 조사하기 위하여, 고정된 압력비에서 충격파관의 길이 및 직경을 변화시켰다.

Keywords

References

  1. Matsuo, K., Miyazato, Y. and Kim, H. D., 1999, "Shock Train and Pseudo-Shock Wave Phenomena in Internal Gas Flows," Progress in Aerospace Sciences, Vol. 35, No. 1, pp. 34-41.
  2. Weiss, A., Grzona. A. and Olivier, G., 2010, "Behavior of Shock Trains in a Diverging Duct," Experiments in Fluids, Vol. 49, No. 2, pp. 355-365. https://doi.org/10.1007/s00348-009-0764-9
  3. Carroll, B. F. and Dutton, J. C., 1990, "Characteristics of Multiple Shock Wave/Turbulent Boundary-Layer Interactions in Rectangular Ducts," Journal of Propulsion and Power, Vol. 6, No. 2, pp. 186-193. https://doi.org/10.2514/3.23243
  4. Matsuo, K., Sasaguchi, K., Mochizuki, H. and Takechi, N., 1980, "Investigation of the Starting Process of a Supersonic Wind Tunnel," Bulletin of the JSME, Vol. 23, No. 186, pp. 1975-1981. https://doi.org/10.1299/jsme1958.23.1975
  5. Akatsuka, J. and Nagai, S., 2010, "The Effect of Diffuser Geometry on the Starting Pressure Ratio of a Supersonic Wind Tunnel," 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, p. 4344.
  6. Deng, R., Lee, K. H. and Kim, H. D., 2016, "Unsteadiness of Pseudo-Shock Wave in a Rectangular Duct," KSPE Spring Conference, pp. 280-285.
  7. Kleine, H., Lyakhov, V. N., Gvozdeva, L. G. and Gronig, H., 1992, "Bifurcation of a Reflected Shock Wave in a Shock Tube," Shock Waves, Springer Berlin Heidelberg, pp. 261-266.
  8. Mark. H., 1958, "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," National Advisory Committee for Aeronautics.
  9. Davies, L. and Wilson, J. L., 1969, "Influence of Reflected Shock and Boundary-Layer Interaction on Shock-Tube Flows," The Physics of Fluids, Vol. 12, No. 5, pp. 37-43.
  10. Matsuo, K., Kawagoe, S. and Kage, K., 1974, "The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube," Bulletin of JSME, Vol. 17, No. 110, pp. 1039-1046. https://doi.org/10.1299/jsme1958.17.1039
  11. Matsuo, K., Kage, K. and Kawagoe, S., 1975, "The Interaction of a Reflected Shock Wave with the Contact Region in a Shock Tube," Bulletin of JSME, Vol. 18, No. 121, pp. 681-688. https://doi.org/10.1299/jsme1958.18.681
  12. Kim, D. W., Kim. T. H. and Kim. H. D., 2017, "Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube," Trans. Korean Soc. Mech. Eng. B, Vol. 41, No. 7, pp. 481-487. https://doi.org/10.3795/KSME-B.2017.41.7.481
  13. Zhang, G., Setoguchi, T. and Kim, H. D., 2015, "Numerical Simulation of Flow Characteristics in Micro Shock Tube," Journal of Thermal Science, Vol. 24, No. 3, pp. 246-253. https://doi.org/10.1007/s11630-015-0780-4
  14. Park, J. W., Kim, G. Y., Md.Alim, I. R. and Kim, H. D., 2015, "Experimental Study of Micro-Shock Tube Flow," Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 5, pp. 385-390. https://doi.org/10.3795/KSME-B.2015.39.5.385
  15. Kim, H. D., 1995, "Shock Wave Phenomena in Fluid Engineerings(II)," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 1, pp. 71-83.