
CFD ANALYSIS FOR A PULSATILE FLOW AROUND A BODY INSIDE A BIFURCATED TUBE 
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The objective of this study is to get simulation data about pulsatile flow around an interior solid body inside 
a bifurcated tube. All the processes were based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 
for solving, and with CATIA R16 for generating geometries. The bifurcated tube models were drawn with the 
bifurcated angle of 45 degrees, considering Murray's law about the diameter ratio. With various locations of the 
object, the effects of flow on the drag were considered. 

For the pulsating flow condition, the velocity wave profile was given as the inlet boundary condition. To 
validate all the result, the simulation was compared with the existing data of the other papers first. Overall flow 
field of both data were similar, but there was some difference at a zero velocity. Therefore the next simulation was 
continued with the sine wave profiles where there is no negative flow, and then the data was compared with one of
the pulmonary artery velocity where there is negative flow. The final process was to calculate flow variables such 
as the wall shear stress (WSS) and to compute the drag of the solid object.
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Fig. 1 Geometry of the bifurcated tube 

Fig. 2 Geometry of the interior body
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Table 1 Apparent Viscosity Model

Fig. 3 Inlet velocity boundary condition as: (a) a sinusoidal wave, 
(b) a femoral wave, (c) a sinusoidal wave with the same 
maximum peak as the femoral wave, (d) a sinusoidal wave 
with the same minimum peak as the femoral wave
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Fig. 5 Geometry of the model for comparison

Fig. 6 Velocity vectors of Ref. 6 for: (a) peak prograde flow; 
(b) zero and (c) peak retrograde flow

Fig. 4 Relative locations of the interior object
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Fig. 7 Calculated belocity profiles for: (a) peak prograde flow; 
(b) zero and (c) peak retrograde flow

Fig. 8 Wall shear stress along the artery hood for the three time 
levels

Fig. 9 Wall shear stress along the artery hood for the three time 
levels (Simulation Results)

Fig. 10 Wall shear stress along the lower wall of the artery for 
the three time levels

Fig. 11 Wall shear stress along the lower wall of the artery for 
the three time levels (Simulation Results)

         



Fig. 12 Velocity profile in position (A) of Fig.4 with wave form 
(b) of Fig. 3 for : (a) peak prograde flow; (b) zero and (c) 
peak retrograde flow

Fig. 13 Velocity profile in position (A) of Fig.4 with wave form 
(a) of Fig. 3 for : (a) maximum prograde flow; (b) 
average prograde flow and (c) minimum prograde flow
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Fig. 14 Velocity profile in position (A) of Fig.4 with wave form 
(c) of Fig. 3 for : (a) peak prograde flow; (b) zero and (c) 
peak retrograde flow

Fig. 15 Velocity profile in position (B) of Fig.4 with wave form 
(b) of Fig. 3 for : (a) peak prograde flow; (b) zero and (c) 
peak retrograde flow
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Fig. 16 Velocity profile in position (D) of Fig.4 with wave form 
(b) of Fig. 3 for : (a) peak prograde flow; (b) zero and (c) 
peak retrograde flow

Fig. 17 Velocity profile in position (E) of Fig.4 with wave form 
(b) of Fig. 3 for : (a) peak prograde flow; (b) zero and (c) 
peak retrograde flow

Fig. 18 Drag distributions at position (A) of Fig. 4 with respect to 
the wave profiles of Fig. 3
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Fig. 19 Drag distributions for the wave form (b) of Fig. 3 with 
respect to the location of an object of Fig. 4
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