• Title/Summary/Keyword: watering method

Search Result 47, Processing Time 0.035 seconds

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.

Water Physiology of Panax ginseng Charcteristics of reproductit.e organs and precipitation rate and humidity of shade system. (인삼의 수분생리 II. 생식기관의 특성과 일복의 누수량 및 습도)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.84-99
    • /
    • 1982
  • Water content and its seasonal change in reprodltctive organs were reviewed in relation to cultivation practice s. Precipitati on and humidity under shade roof were reviewed in relation to shading ,jystem and environmental factors. High water content of reproductive organs suggests vulnerability to water stress during reproductive growth stage. Watering during dehisconce treat menu seems to keep optimum temperature but cnoventional practice seems to be too often In watering. Information effe on water physiology of seeds is too rare to develop seed storing method and ctive seed use. Dehiscent mechanism was considered in terms of water absorption of embryo. Precipitation rate of conventional shade roof reaclled to 38% and at line level 50% and varied with shade patterns. Precipitation rate under shade has been investigated for itself but should be investigated in relation to light intensity and soil moisture content Relative humidity under shade depends mainly on air humidity and soil moisture, considerably on shade materials and lithe on pole height, bed width or plant density. Since relative humidity was lower in afternoon it was often less than 50% even in summer with high temperature suggesting possible disorder of phi biological function especially in photosynthesis. More information was needed on optimum humidity for productive physiological function of leaf.

  • PDF

Elect on Saving Water of Underground Trickle Irrigation (지중관수 방법에 의한 용수절감 효과)

  • Kim J. H.;Kim C. S.;Kim T. W.;Hong J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.102-109
    • /
    • 2005
  • Water consumption at the farm is up to 48 percent of water resource of South Korea while manufacturing industry's is only $9.6\%$. The area of arable land is 2,077,067 ha and 27 percent of it is used for growing fruits and vegetables using furrow or surface irrigation at the greenhouse. Surface irrigation at the greenhouse for fruits and vegetables has problems such as over watering and insufficient supply of water to the fine roots of the plant. However, the research on the new method of irrigation to save water usage is few. The characteristics of soil wetting was measured for using surface irrigation and underground trickle irrigation method where water was supplied at 10, 15, 20, and 25 cm beneath the surface ground. Followings are summary of this study. 1. The efficiency of underground trickle irrigation was expected to be as high as twice of surface irrigation such as drip watering or sprinkling. 2. This improvement could be possible by using less than $50\%$ of irrigation water than surface irrigation to supply similar amount of water near fine roots. 3. Surface irrigation causes soil compaction as deep as 20 cm below the surface ground which reduces soil porosity and root respiration ending up developing less fine roots. 4. Underground trickle irrigation can prevent overdamping in the greenhouse since it does not over wet the surface soil. At winter, the amount of agricultural chemical usage could be reduced since this irrigation method does not develop blight or crop disease from condensation of water vapor.

Quality Characteristics of Distilled Soju with Different Pretreatment of Rice (쌀 전처리를 달리한 증류주의 품질특성)

  • Seung Eun, Lee;Ji-Eun, Kang;Bora, Lim;Heui-Yun, Kang
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.6
    • /
    • pp.555-563
    • /
    • 2022
  • The purpose of this study was to confirm the quality characteristics of distilled soju with different rice pretreatment processes. The non-steamed fermentation method is a technology that uses starch to produce saccharification and alcohol without going through the steaming of raw materials. It has advantages such as reduction of manpower and cost, prevention of nutrient loss, and minimization of waste water. In this study, rice used were non-steamed and pulverized 'Baromi2', nonsteamed and steamed 'Samgwang', and puffed rice. As the fermenting agent, koji, modified nuruk, N9 yeast, and purified enzyme were used, and lactic acid was added to prevent contamination during fermentation. The amount of water was 300% in total, and after the first watering, 5 days after fermentation, the second watering was carried out. As a result of the study, it was confirmed that the non-steamed fermentation method using 'Baromi' was superior to the existing fermentation method in terms of temperature during fermentation, final alcohol content, soluble solids, and pH. By expanding the stability of the production technology of non-steamed fermentation technology, product quality improvement can be expected.

Growth and yield responses of rice varieties to various soil water deficit conditions under different soil types

  • Kikuta, Mayumi;Samejima, Hiroaki;Magoti, Rahab;Kimani, John M.;Yamauchi, Akira;Makihara, Daigo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.322-322
    • /
    • 2017
  • To avoid drought stress under rainfed upland conditions, it is important for rice to efficiently utilize water at shallow soil layers supplied by rainfall, and access to water retained in deer soil layers. The root developmental characteristics of rice, which play important role in the adaptability to drought conditions, vary depending on the variety. Moreover, water availability for plant differs depending on the soil types that have different physical properties such as water holding capacity, permeability, capillary force, penetration resistance, etc. In this study, we evaluated growth and yield responses of rice varieties to various soil water deficit conditions under three different soil types. The experiment was conducted in a plastic greenhouse at the Kenya Agricultural and Livestock Research Organization-Mwea from October 2016 to January 2017. Two upland varieties (NERICA 1 and 4) and one lowland variety (Komboka) were grown in handmade PVC pots (15.2 cm diameter and 85.0 cm height) filled with three different types of soil collected from major rice-growing areas of the country, namely black cotton (BC), red clay (RC), and sandy clay (SC). Three watering methods, 1) supplying water only from the soil surface (W1), 2) supplying water only from the bottom of the pots (W2), and 3) supplying water both from the soil surface and the bottom of pots (W3), were imposed from 40 days after sowing to maturity. Soil water content (SWC) at 20, 40, and 60 cm depths was measured regularly. At the harvesting stage, aboveground and root samples were collected to determine total dry weight (TDW), grain yield, and root length at 0-20, 20-40, 40-60, and 60-80 cm soil layers. Irrespective of the watering methods, the greatest root development was obtained in RC, while that in BC was less than other two soils. In BC, the degree of yield reduction under W1 was less than that in RC and SC, which could be attributed to the higher water holding capacity of BC. In RC, the growth and yield reduction observed in all varieties under W1 was attributed to the severe drought stress. On the other hand, under W2, SWC at the shallow soil depth in RC was maintained because of its higher capillary force compared with BC and SC. As the result, growths and yields in RC were not suppressed under W2. In SC, deep root development was not promoted by W2 irrespective of the varieties, which resulted in significant yield losses. Under W1, the rice growth and yield in SC was decreased although shallow root development was enhanced, and the stomatal conductance was maintained higher than RC. It was suspected that W1 caused nutrients leaching in SC because of its higher permeability. Under rainfed conditions, growth and yield of rice can be strongly affected by soil types because dynamics of soil water conditions change according to soil physical properties.

  • PDF

Confirmation of Drought Tolerance of Ectopically Expressed AtABF3 Gene in Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jung Hun;Kwon, Tackmin;Lee, Jai-Heon;Kim, Doh-Hoon;Lee, Dong Hee;Kim, Chang-Gi;Chung, Young-Soo
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Soybean transgenic plants with ectopically expressed AtABF3 were produced by Agrobacterium-mediated transformation and investigated the effects of AtABF3 expression on drought and salt tolerance. Stable Agrobacterium-mediated soybean transformation was carried based on the half-seed method (Paz et al. 2006). The integration of the transgene was confirmed from the genomic DNA of transformed soybean plants using PCR and the copy number of transgene was determined by Southern blotting using leaf samples from $T_2$ seedlings. In addition to genomic integration, the expression of the transgenes was analyzed by RT-PCR and most of the transgenic lines expressed the transgenes introduced. The chosen two transgenic lines (line #2 and #9) for further experiment showed the substantial drought stress tolerance by surviving even at the end of the 20-day of drought treatment. And the positive relationship between the levels of AtABF3 gene expression and drought-tolerance was confirmed by qRT-PCR and drought tolerance test. The stronger drought tolerance of transgenic lines seemed to be resulted from physiological changes. Transgenic lines #2 and #9 showed ion leakage at a significantly lower level (P < 0.01) than ${\underline{n}}on-{\underline{t}}ransgenic$ (NT) control. In addition, the chlorophyll contents of the leaves of transgenic lines were significantly higher (P < 0.01). The results indicated that their enhanced drought tolerance was due to the prevention of cell membrane damage and maintenance of chlorophyll content. Water loss by transpiration also slowly proceeded in transgenic plants. In microscopic observation, higher stomata closure was confirmed in transgenic lines. Especially, line #9 had 56% of completely closed stomata whereas only 16% were completely open. In subsequent salt tolerance test, the apparently enhanced salt tolerance of transgenic lines was measured in ion leakage rate and chlorophyll contents. Finally, the agronomic characteristics of ectopically expressed AtABF3 transgenic plants ($T_2$) compared to NT plants under regular watering (every 4 days) or low rate of watering condition (every 10 days) was investigated. When watered regularly, the plant height of drought-tolerant line (#9) was shorter than NT plants. However, under the drought condition, total seed weight of line #9 was significantly higher than in NT plants (P < 0.01). Moreover, the pods of NT plants showed severe withering, and most of the pods failed to set normal seeds. All the evidences in the study clearly suggested that overexpression of the AtABF3 gene conferred drought and salt tolerance in major crop soybean, especially under the growth condition of low watering.

Growth and Shape of Soybean Sprouts as Affected by Culture Method and Their Pressing (관수방법별 압착정도에 따른 콩나물의 생장과 형태 변화)

  • Jeon, Seung-Ho;Lee, Chang-Woo;Kim, Hong-Young;Jeon, Byong-Sam;Kang, Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.20 no.2
    • /
    • pp.145-149
    • /
    • 2007
  • Shape of soybean sprouts affects their marketability. This study was carried out to understand the effects of pressure in both overspraying and underwatering cultivation methods on growth and morphological characteristics of soybean sprouts. Pressing treatments were done by continuous pressing by laying a plastic culture box over another with growing the sprouts, their alteration every day, or no pressing in overspraying method, and by continuous pressing, pressing after the 4th day cultivation with 30 kg steel case, or no pressing in underwatering method. The soybean (cv. Junjery) seeds were soaked in 2 ppm BA solution for 5 hours and then aerated for 3 hours immediately before 6 day culture. Lateral roots, hypocotyl and root lengths, hypocotyl diameters, fresh and dry weights were measured. Lateral roots per sprout were decreased with stronger pressing regardless of watering methods. In overspraying method, continuous pressing treatment resulted in shortest hypocotyl, but no and ones did the longest root. In underwatering method, however, no pressing one showed the longest hypocotyl but continuous pressing did the shortest hypocotyl. Regardless of watering methods, middle part of hypocotyl was more thickened with stronger pressing although hook diameters of the 3 treatments were not affected. In overspraying method. total fresh weight per sprout was the least in no pressing but the greatest in continuous pressing. In underwatering method, however, there was no significant difference between the treatments.

A Historical Research on Native Foods of Korea -with special reference to soybean and mungbean sprouts- (한국고유식품의 역사적 연구 -콩나물과 숙주나물을 중심으로-)

  • LeeKim, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.1 no.2
    • /
    • pp.163-166
    • /
    • 1986
  • Soybean and mungbean sprouts are vegetables indigenous to Korea which have been grown throughout the year from the most remote age. They had been called interchangeably as duchaeah or duah. Control method of environmental conditions for soybean or mungbean sprouts growing had been already appreciated from long time ago. A growing method once developed might have been handed over considerable period. Siroo (시루) and yongsoo (용수) had been the most common containers and the watering skill is of the utmost importance for soybean sprouts growing. As the demand of soybean sprouts in the market increased, a pit has been used for bean sprouts growing, and transformed into regular soybean sprouts factory. Now bean sprouts are international food and the demand of bean sprouts seems permanent in Korea. Accordingly the long-term policy concerned with the production of soybean sprouts should be prepared, placing emphasis on improved quality and safety.

  • PDF

Weeding Hypothesis on Direct Seeding Rice Field as Applied by the Old Firing and Water Dressing Method (고대 화경수누법(火耕水?法)을 응용한 직파 논[直播畓] 제초법)

  • Guh, Ja-Ock;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • It was a method of weed removing, called as whagyeongsoonoobeob. Namely, the Hwanoobeob was the weeding method came from "Jeminyosool" in old China, and had been descended to "Wibinmyeongnonggi", "Nonggajibseong" and "Gwanongsocho" in the $16\sim18^{th}$ century of our country. The method was applied to rice paddy after applying direct-seeding, burning by unit before watering to remove weeds and to save rice plants. It would be applied with a method of using non-selective herbicide such as paraquat and oxyfluorfen, or radiation treatment, as a simple and safe weed removing method.

Effect of Watering Methods on Growth of Soybean Sprout and Culture Temperature (관수방식에 따른 콩나물의 생장과 재배용기 내의 온도 변화)

  • Jeon Byong-Sam;Hong Dong-Oh;Kim Hong-Young;Lee Chang-Woo;Kang Jin-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.344-347
    • /
    • 2006
  • Watering methods for soybean sprouts could be mainly divided into two groups of overspraying and underwatering. The study was carried out to determine the effect of water supplying method on growth, morphological characteristics, colour and cutting resistance of soybean (cv. Junjery) sprouts and culture temperatures. The morphological characters, fresh and dry weights were measured on the 6th day after their culture, but daily mean temperatures inside the plastic culture boxes were measured by data-loggers. Lateral roots were more formed in the underwatering method (UM) than in the overspraying method (OM). Although their total lengths of both methods were nearly same, OM had longer hypocotyl but UM did longer root than the other. Middle and upper parts of hypocotyl were more thickened in UM than in OM. UM showed more hypocotyl fresh and dry weights than OM. There was, however, no significant difference between the two methods in cotyledon, root, total fresh and dry weights although the culture temperature was higher in OM than in UM.