• Title/Summary/Keyword: volume compressibility

Search Result 95, Processing Time 0.027 seconds

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Development of Incompressible flow solver based on unstructured FVM (비정렬 유한체적법을 이용한 비압축성 유동해석 코드 개발)

  • Kim Jong-Tae;Kim Yong-Mo;Maeng Joo-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.33-39
    • /
    • 1996
  • An incompressible flow stover based on the unstructured finite volume method has been developed. The flow domain is discretized by triangles in 2D or tetrahedra in 3D. The convective and viscous fluxes are obtained using edge connectivities of the unstructured meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. Laminar test flow problems are computed and presented with a comparison against other numerical solutions or experimental results.

  • PDF

DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS (삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발)

  • Jung, Mun-Seung;Kwon, Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

A STUDY ON IMPLICIT METHOD FOR SOLVING INCOMPRESSIBLE FLOW WITH UNSTRUCTURED MESHES (비정렬 격자상에서 비압축성 유동해석을 위한 음해법에 대한 연구)

  • Kim, M.G.;Ahn, H.T.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • A new and efficient implicit scheme is proposed to obtain a steady-state solution in time integration and the comparison of characteristics with the approximation ways for the implicit method to solve the incompressible Navier-Stokes equations is provided. The conservative, finite-volume cell-vertex upwind scheme and artificial compressibility method using dual time stepping for time accuracy is applied in this paper. The numerical results obtained indicate that the direct application of Jacobian matrix to the Lower and upper sweeps of implicit LU-SGS leads to better performance as well as convergence regardless of CFL number and true time step than explicit scheme and approximation of Jacobian matrix. The flow simulation around box in uniform flow with unstructured meshes is demonstrated to check the validity of the current formulation.

The Effect of Nonrandom Distribution of Molecules on the Equation of State for Gases (분자의 논랜덤 분포가 기체의 상태방정식에 미치는 영향)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.540-546
    • /
    • 2013
  • Using the free volume of van der Waals equation, Carnahan-Starling equation for hard spheres, Wilson equation for nonrandom mixing of solution, NRTL equation and our equation, several new equations of states for pure gases are derived. Using these equations, compressibility factors for pure gases are calculated and compared with Nelson-Obert generalized compressibility factor charts. The equation of states using the concept of molecular nonrandom distribution gave better results than those of molecular random distribution. This shows that the molecular nonrandom distribution makes considerable effect on the equation of states.

Effects of Sludge SVI and Chemical Conditioning on Activated Sludge Flotation Thickening (슬러지 SVI와 화학적 개량이 슬러지부상농축에 미치는 영향)

  • Lee, Ki Yong;Kim, Shin Jo;Kwon, Oh Sang;Yeom, Ick Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.349-355
    • /
    • 2010
  • Electroflotation (EF) was conducted for activated sludge thickening to investigate the effects of sludge SVI (sludge volume index) and chemical conditioning. Return sludge samples were used for the experiment, which were collected from municipal wastewater treatment plants. The performance of sludge thickening was significantly dependent on sludge SVI. For the sludges with SVI values in a range from 50 to about 150 mL/g, the maximum float content decreased rapidly from 8.4 to 3.5% and flotation compressibility followed the same pattern. In cases of sludges with SVI higher than 150 mL/g, those results showed low content levels without large changes. Gas/solids ratio tended to increase with an increase in SVI. When polyelectrolyte was added into sludges for the conditioning, compressibility increased up to 75% and gas/solids ratio was reduced up to about 35% under the condition of microbubble production rate of 530 mL/h, however, there was no consistent effect of chemical conditioning on the maximum float solids content; some cases were positive but the others negative. It was expected that the optimum dose of electrolyte depends on sludge SVI and an excessive chemical dose causes a performance deterioration of flotation thickening.

Behavior of cryogenic gases in a closed space (밀폐된 공간에서 초저온 액화가스의 거동)

  • 이현철;강형석;박두선;손무룡
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.48-51
    • /
    • 2000
  • The behavior of cryogenic liquid stored in a closed cryogenic tank has been studied at various liquid levels, as a function of pressure and temperature on time, assuming heat leak(NER) is 0.7%/day. The pressure depends, as expected, on the liquid-vapor ratio in a tank. The calculation shows that if liquid level is as high as 90%,much higher than the critical volume ration, in a closed tank of designed pressure 11 bar, it takes 5.4 to 15days for the entire volume of the tank to be filled with liquid and 11 to 22 days for the tank to be exploded. If a closed tank is full of liquid, it is extremely dangerous because of abrupt pressure increase so that the safety devices are necessary to vent out pressurized gas. These phenomena can be explained with the liquid heat capacity, latent heat and compressibility.

  • PDF

CAVITATION FLOW ANALYSIS OF 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • An, S.J.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.20-24
    • /
    • 2011
  • In this paper, numerical simulation of cavitation flow for modified NACA66 hydrofoil was made by using the multi-phase RANS equation based on pseudo-compressibility. The Homogeneous mixture model comprised of the mixture continuity, mixture momentum and liquid volume fraction equations was utilized. A vertex-centered finite-volume method was used in conjunction 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing The Spalart-Allmaras one equation model was employed for the closure of turbulence. Reasonable agreements were obtained between the calculation results and the experiment for pressure coefficients on the hydrofoil surface.

  • PDF

Theory of Liquid Water (액체 물에 관한 이론)

  • Pak Hyungsuk
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.460-468
    • /
    • 1976
  • A theory of liquid water is developed by assuming that the molecules in the liquid state have solid-like and gas-like degrees of freedom. The spectroscopic data are used in assigning the vibrational frequencies of solid-like molecules. The calculated values of molar volume, vapor pressure, entropy, entropy of vaporization, expansion coefficient, compressibility, heat capacities at constant volume and at constant pressure, surface tension and critical point properties are all in excellent agreement with the observed data.

  • PDF

Influence of Mold Temperature, Lubricant and its Additional Quantity on Compressibility in Warm Compaction

  • Ushirozako, Tsutomu;Yamamoto, Masayuki
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.195-196
    • /
    • 2006
  • In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.

  • PDF