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Abstract

In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady

Reynolds-averaged Navier-Stokes (RANS) equations are closed with the   model. The artificial com-

pressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity

fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as

velocity components and pressure. The governing equations are discretized in a conservation form using

a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory

behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-

difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical

algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free

surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the

kinematic free surface boundary conditions at the free surface instead of the dynamic free surface

boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the

decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the

boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our

RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent

shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good

overall agreement with the laboratory experimental measurement for the turbulent flow.

Keywords: free surface flow, unsteady Reynolds-averaged Navier-Stokes (RANS) equations,  

model, artificial compressibility (AC) method, finite volume method, interface-tracking method, hydro-

dynamic pressure
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1. INTRODUCTION

The two-dimensional vertically averaged shallow

water equations have been commonly applied to the

most of the hydraulic engineering flows during the last

two decades. Three-dimensional (3D) numerical models

are required to compute the vertical and transverse

variation of velocity at the natural river, the compli-

cated channels, and estuarial regions. 3D free-surface

models based on the hydrostatic pressure for free-
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Fig. 1. Definition of the Water Surface and the

Bottom Elevation

surface flow approximation have been developed lately.

The hydrostatic models (Casulli and Cheng, 1992;

Huang and Spaulding, 1995; Lu and Wai, 1998) assumed

that the vertical acceleration components are very small.

However, when the depth is small to be compared with

the wave length, its assumption is not available for the

abruptly changing bed topography, short wave motion,

and the problem of the saltwater intrusion with strong

density gradients. In recent years, the hydrodynamic

models have been developed beyond limitations of the

hydrostatic pressure assumption (Casulli and Stelling,

1998; Casulli, 1999; Stelling, 2001; Musteyde et al., 2002;

Yuan and Wu, 2004; Lee et al., 2006a). A fractional step

method, that the pressure is decomposed into the

hydrostatic and the hydrodynamic pressure components,

has been employed by Casulli and Stelling, Casulli,

Stelling, Musteyde et al., Yuan and Wu, and Mahadevan

et al.. Because the hydrodynamic pressure component as

a function of the velocity field in a fractional step method

is unknown, an integrated time step using two fractional

steps is employed for a fractional step method. The first

step is that velocity components in momentum equations

are solved with hydrodynamic pressure components at

previous time step. It introduces the errors of mass

conservation in the incompressible continuity equation.

Corrected velocities, which can be computed to solve the

pressure-Poisson equation at the second step, can be

eliminated to determine the hydrodynamic pressure.

The CPU time is very expensive to solve the pressure-

Possion equation using a fractional step method.

The artificial compressibility (AC) method instead of

a fractional step method was originally proposed by

Chorin (1967) for solving the steady state incompres-

sible Navier-Stokes equations through a time-marching

approach. It is called well established time-marching

methods. According to this formulation the continuity

equation is transformed from a constraint imposed on

the velocity field to an evolution equation in time, by

adding a time derivative of the pressure to it. The AC

method, directly coupled with pressure and velocity

field, was developed by Beddhu et al. (1994), Li (2003),

and Lee et al. (2006).

In this paper, we present the three dimensional in-

compressible unsteady Reynolds-averaged Navier-

Stokes (RANS) equations closed with unsteady stati-

stical turbulence model, which is incorporated into the

standard   model. AC method is employed only to

the hydrodynamic pressure using the decomposition

into hydrostatic and hydrodynamic components (Lee et

al., 2006b).

2. MATHEMATICAL FORMULATION

For free surface flows (Lee et al., 2006b), the pressure

term  can be decomposed into two components such

as the hydrostatic pressure  and the hydrodynamic

pressure  (Fig. 1), leading to,

     (1)

where  is the function of the vertical location  and

water surface elevation , and    .  is a water

density, and  is a gravitational acceleration.

2.1 Governing Equations

Using the generalized curvilinear coordinate trans-

formations, the Navier-Stokes equations can be for-

mulated in vector form as follows,



Q
 

E


F


G


Ev


Fv


Gv
 S   (2)

 diag     , Q      .

The advective terms can be written as follows,

E  














  
  
  

, F  














  
  
  

,

G  












 

      
      
     

(3)
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where  is the artificial compressibility parameter. ,  ,

and  are velocity components.  is the time, and the

relationship between contravariant velocity components

and covariant velocity components is as follows,

  

   

  

(4)

where the derivatives          are

called the metrics. The Jacobian  of the geometric

transformation   →   is defined as follows,

           (5)

The diffusion terms can be also written as follows,

Ev 























    










   










   



Fv 























    










   










    



Gv 























    










   










    

where  is the so-called contravariant metric tensor

and  is the velocity gradient tensor.

The gravity terms can be also written as follows,

S  




















 



























 





 
















 (7)

2.2 Standard   Model

The standard   model is employed in order to

compute the eddy viscosity  as to close the RANS

equations. In the standard   model, the eddy

viscosity is calculated in terms of the turbulence kinetic

energy  and its rate of dissipation . The transport

equations for  and  are formulated in curvilinear

coordinates using the vector form as follows,



Q t

 
Et



Ft


G t


Evt


Fvt


Gvt
 St  

(8)

where Qt     (9)

Et  
 


 


 

 
, Ft  

 

 


 

 
, Gt  

 

 


 

 
 (10)

Evt  














  




 



  




 


Fvt  














  




 




  




 
 (11)

Gvt  














  




 



  




 


St  












  




 

  (12)

This model contains five parameters and the most

commonly used values are as follows,

       . (13)

The rate of production of turbulent kinetic energy by

mean flow represents to transfer kinetic energy from

the mean flow to the turbulence. Because the eddy

viscosity hypothesis is used, the rate of production of

turbulent kinetic energy can be written,

  

 




 





 


. (14)

The eddy viscosity is expressed as,

 


. (15)

(6)
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3. NUMERICAL METHODS

The unsteady Reynolds averaged Navier-Stokes (RANS)

equations in generalized curvilinear coordinates with the

mean flows and turbulence closure equations are marched

by integrating a time using the discrete equations.

3.1 Discretization for RANS Equations and

Turbulence Transport Equations

The RANS equations are discretized in the conser-

vation form using a three-point backward, second-

order accurate Euler implicit scheme for the temporal

derivative and three-point, second order accurate

central differencing for the spatial derivatives,

 
 

  

  
   





 
  


    

   (16)

where   diag    


 

  

∆ 

  
      

    
  

, (17)



    ∆ 

          
. (18)

The flux  is the flux at the cell interfaces and the

artificial dissipation flux   is chosen as the matrix-

valued scheme (Lin and Sotiropoulos, 1997),

   
  


  

    
     

  (19)

   
   

 
 

 

   (20)

where  is a constant and the Jacobian matrix is   .

The turbulence transport equations are discretized in

space and time. The numerical scheme of the turbul-

ence transport is a similar to that of the RANS

equations as follows,


 

 
  

 


  



 
  


    

   . (21)

The governing equations are discretized in a con-

servation form using a second order accurate finite

volume method on a non-staggered grid. To enhance

the efficiency and robustness of the algorithm, the

local dual time stepping and the implicit method of the

Beam and Warming method, which is the extension of

the ADI method (Beam and Warming, 1967), are

employed.

3.2 Boundary Conditions

Boundary conditions are specified at the inlet, outlet,

and solid wall boundaries. Boundary conditions are needed

for the model equations. In this section, the boundary

conditions for  equations in the open channel

hydraulics are described in detail. The numerical

scheme for advancing  and  is unchanged from the

scheme with the hydrostatic pressure assumption using

the standard bed and the surface boundary conditions.

At the inlet, the velocity components and turbulence

variables are specified for open channel flow(Chow,

1959)




 

 ln 



   


 Rough bed

 

 ln 




   


 Smooth bed 

    

  





 
 

   




 
 

(22)

where  is equivalent roughness height, and  is the

friction velocity,    is called the von Karman

constant,  is kinematic viscosity,    is the

turbulence model parameter, and  is the flow depth. If

inlet boundary conditions in Eq. (22) are simplified, its

boundary conditions for the homogeneous turbulence

can be specified as,

  constant    

      




(23)

At the outlet,  is defined and zero normal gradients

are specified for all the other variables.

At the free surface,  and  are defined (Rodi, 1984)

by




    

 


(24)
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where  is the coordinate normal to free surface.

At the free surface   and a zero normal gradient

condition for  and  are used. The vertical velocity 

at the free surface is determined from the kinematic

boundary condition,

 







  


  

 



  

. (25)

3.3 Free Surface Evolution Equation

As shown in Fig. 1, the original incompressible

continuity equation is integrated over the depth in

order to get the water surface equation. Using the

generalized curvilinear coordinate transformations, the

free surface equation can be derived (Lee et al., 2006a

and 2006b),



 
   

  
  

  
    (26)

where  is the depth,  is the bottom elevation, and the

transformed velocities are as follows,

  

 




 



  
 



 





  

 


 

 



   
 



 





(27)

3.4 Wall Boundary Conditions Using Wall Func-

tions

The inner part of the wall layer, right next to the

wall, is dominated by viscous effects and it is called

the viscous sublayer. In spite of the fluctuations, the

Reynolds stresses are still small here because of the

viscous effects. Because of the thinness of the viscous

sublayer, the stress can be taken as uniform within

the layer and equal to the wall shear stress . The

velocity distribution of Eq. (28) is linear and no-slip

boundary condition is available in the viscous

sublayer,

  at  ≤. (28)

The inner and outer solutions are matched together

in a region of overlap. These velocity distributions are

in the overlap layer, called the inertial sublayer or

simply the logarithmic layer,


  


 

 ln  

  
for rough walls at  

(29)


  

 
 

 ln   

 

 ln 

 
 

for smooth walls at  

(30)

where  is the velocity parallel to boundary which is

calculated from the momentum equations at  , the nor-

mal distance of the first grid point from the boundary,


  is nondimensional velocity,   is

the friction velocity which is related to the bottom shear

stress  , and  is the roughness height. The wall func-

tion is valid when   ms at ≤ 
 ≤ ,

and the grid allocation  varies from m to

m (Stansby and Zhou, 1998; Lee et al., 2006b).

Because no-slip boundary condition at the wall is not

used to reduce the grid size, the wall function is applied

in this study.

3.5 Vertical Grid Generation

Horizontal grids are generated depending on the

geometrical boundaries. However, along the vertical

direction, when inviscid flow of constant eddy viscosity

is assumed, the water depth is divided using an equally

spaced vertical grid. For the turbulent flows, since the

spacing of vertical grid near the bottom is finer than

that of center for vertical direction, the following alge-

braic equations using a grid clustering method may be

employed by Hoffmann & Chiang (2000). The inverse

transformation is given by

   





  

  



   

 






  



   

   

(31)

where  is the clustering parameter, and  defines

where the clustering takes place.

3.6 Solution Procedure for Free Surface Treat-

ment

A more accurate treatment of the free surface is

proposed in this study which uses the free surface

equation and kinematic boundary condition. At the
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(b) Computational Domain Along the Center Line at   m
Fig. 3. Computational Domain for the Trench Channel

(a) 3-D Computational Domain for the Trench Channel

Fig. 2. Flow Chart of 3-D Numerical Solver

beginning of the computation, the free surface is

assumed flat and a mesh is generated. During the

iterative solution process, the kinematic boundary

condition is enforced through the vertical velocity

boundary condition while the free surface equation is

used to obtain the free surface elevation. When the

new surface elevation is obtained, the grid is generated

through stretch or compression to conform to the new

free surface shape. The flow chart of 3-D numerical

solver, which is developed in this study, is shown in

Fig. 2. This numerical solver consists of two time

iteration loops (such as a real time step iteration loop

and a pseudo-time step iteration loop), the module of

a free-surface evolution, and finally, the module of a

grid generation for a free surface.

3.7 Application Case

The experiment of van Rijn (1982) who measured

the velocities, turbulent kinetic energy, shear stress for

the trench channel is selected as a test case in this

paper. In this trench channel flow, numerical solutions

with the    model are compared with experimental

results in a channel m long and m wide with

m high side walls (Alfrink and van Rijn, 1983;

Stansby and Zhou, 1998; Basara and Younis, 1995;

Lee et al., 2006b). The computational domain initially

consists of an equally spaced grid m used in the
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Fig. 4. Velocity Profiles for the Trench Channel Flow Along the Center Line

Fig. 5. Turbulent Kinetic Energy Profiles for the Trench Channel Flow Along the Center Line

Fig. 6. Shear Stress Profiles for the Trench Channel Flow Along the Center Line

horizontal and lateral directions with 31 layers in the

vertical direction using    and    in Eq. (31).

In order to evaluate the performance of this numerical

method, mesh sizes are chosen: the finest mesh is 225

× 11 × 31 nodes. A coarser mesh is 113 × 11 × 31 nodes.

And the coarsest mesh is 57 × 11 × 31 nodes. The most

optimal and convenient value of  to get the most

acceptable convergence is selected to the unity

through several computational experiments performed

by some authors (Roger and Kwak, 1991; Kaliakatsos

et al., 1996; Chen et al., 1999; Madsen and Schaffer,

2006). The Courant-Friedrich-Lewis () number

used in this numerical study is   . As shown

in Fig. 3, five measurement locations at   m ,

m , m , m and  m along the longitudinal

direction are where observed data are compared with

numerical results in this study.

4. RESULTS

As shown from Fig. 4 to Fig. 6, this algorithm yields

good agreement with van Rijn’s experimental results

for the horizontal velocity , turbulent kinetic energy

, and shear stress . The model predicts the largest

discrepancy near the bottom at locations   m
and   m . At these locations, the results of finer
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Fig. 7. Velocities  at Location    m
According to Grid Sizes

Fig. 9. Friction Velocities, 
According to Grid Resolution

Fig. 8. Velocities  at Location    m
According to Grid Sizes

grids show more accuracy than those of the coarser

grid near the bottom. The difference of shear stress

profiles between experimental and numerical results is

larger along direction. This is because that a   

model is assumed for an isotropic turbulence.

Especially, in order to examine grid dependency,

numerical solutions are obtained using three computa-

tional domains, which are refined in the longitudinal

direction such as 57 ×11 × 31 nodes, 113 × 11 ×31 nodes,

and 225 × 11 × 31 nodes. The vertical grid spacing is

computed using    and    in Eq. (31).

Because the vertical grid size is sufficient enough to

solve the wall boundary, only longitudinal direction is

refined in this study. From Fig. 7 to Fig. 8, the longitu-

dinal velocities according to each grid size are com-

pared at locations   m and   m , where

reversal flow is observed and where velocities vary

rapidly compared to the other locations.

As shown in Fig. 9, the friction velocities are com-

puted with these different grids, and the results for

the friction velocities are compared, where relatively

large differences are shown depending on the different

grids for the hydrodynamic pressure calculations near

the beginning and the end of the trench. Fig. 9 shows

that larger grid sizes should be required if accurate

estimation of shear velocities is important.

However, the numerical solutions calculated from

this model are as good as the experimental data by

van Rijn (1982). This indirectly means more accuracy

and applicability of the current AC method by solving

hydrodynamic pressure and velocities simultaneously.

Streamlines show that a circulation pattern occurs

near the beginning of the trench in Fig. 10 and the

same circulation pattern for velocity vectors is also

shown in Fig. 11.
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Fig. 10. Streamlines of Computation with Hydrodynamic Pressure Along the Center Line

Fig. 11. Velocity Profiles of Computation with Hydrodynamic Pressure Along the Center Line

5. CONCLUSION

We have developed numerical scheme for incor-

porating the hydrodynamic pressure using the

artificial compressibility method at trench channel

problem. The numerical model is formulated in gener-

alized curvilinear coordinates in conservation form

and   model is incorporated for the turbulence

closure. In this numerical method, the advection terms

are approximated using the second order accurate

central differencing with the artificial dissipation flux

chosen as the matrix-valued scheme. In this study,

the trench flow problem for the steady state test case

is applied because experimental data are available.

Reasonable agreement with experimental results is

found in this trench problem.
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