• Title/Summary/Keyword: voltage boost

Search Result 905, Processing Time 0.027 seconds

Boost Converter for High Performance Operating of Fuel Cell System (연료전지 시스템의 고효율운전을 위한 6상 BOOST CONVERTER)

  • Park, S.S.;Yoon, H.J.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.867-869
    • /
    • 1993
  • In generally Boost Converter is used for Fuel Cell System. Because the output voltage of fuel cell is too small and greatly depends on the load condition, Boost Converter are required to boost and regulate the Fuel Cell voltage for per conversion efficiency. In this Paper, 6-phase Boost Converter is used to boost the Fuel Cell Voltage and regulate the output voltage. Multi phase converter hag some advantages such as low ripple and filter sine. About the Peak Current Control and compare of the Ripple Current of Boost Converter, we have studied.

  • PDF

Hybrid-Boost Modular Multilevel Converter-Based Medium-Voltage Multiphase Induction Motor Drive for Subsea Applications

  • Daoud, Mohamed;Elserougi, Ahmed;Massoud, Ahmed;Bojoi, Radu;Abdel-Khalik, Ayman;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.714-726
    • /
    • 2019
  • This paper proposes a hybrid-boost Modular Multilevel Converter (MMC) for the Medium-Voltage (MV) Variable Speed Drives (VSDs) employed in subsea applications, such as oil and gas recovery. In the presented architecture, a hybrid-boost MMC with a reduced number of semiconductor devices driving a multiphase Induction Machine (IM) is investigated. The stepped output voltage generated by the MMC reduces or eliminates the filtering requirements. Moreover, the boosting capability of the proposed architecture eliminates the need for bulky low-frequency transformers at the converter output terminals. A detailed illustration of the hybrid-boost MMC operation, the expected limitations/constraints, and the voltage balancing technique are presented. A simulation model of the proposed MV hybrid-boost MMC-based five-phase IM drive has been built to investigate the system performance. Finally, a downscaled prototype has been constructed for experimental verification.

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Start-up Voltage Generator for 250mV Input Boost Converters (250mV 입력 부스트 컨버터를 위한 스타트업 전압 발생기)

  • Yang, Byung-Do
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1155-1161
    • /
    • 2014
  • This paper proposes a start-up voltage generator for reducing the minimum input supply voltage of DC-DC boost converters to 250mV. The proposed start-up voltage generator boosts 250mV input voltage to over 500mV to charge the capacitor for starting the boost converter. After the boost converter operates initially with the supply voltage charged in the capacitor, it uses its boosted output voltage for the supply voltage. Therefore, after the start-up operation, the proposed DC-DC boost converter works as the same as the conventional one. The proposed start-up voltage generator reduces the threshold voltage of the transistors by adjusting the body voltage at a low input voltage. This causes the higher clock frequency and the larger current to a Dickson charge-pump for boosting the input voltage. The proposed start-up voltage generator was implemented with a $0.18{\mu}m$ CMOS process. Its clock frequency and output voltage were 34.5kHz and 522mV at 250mV input voltage, respectively.

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua;Yang, Xu;Chen, Wenjie;Yao, Xiaofeng
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.

1KW converter using boost-flyback topology (Boost-Flyback topology를 이용한 1KW급 Converter)

  • Hwang, Sun-Nam;Chae, Hyeng-Jun;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

Design of DC-DC Boost Converter with RF Noise Immunity for OLED Displays

  • Kim, Tae-Un;Kim, Hak-Yun;Baek, Donkyu;Choi, Ho-Yong
    • Journal of Semiconductor Engineering
    • /
    • v.3 no.1
    • /
    • pp.154-160
    • /
    • 2022
  • In this paper, we design a DC-DC boost converter with RF noise immunity to supply a stable positive output voltage for OLED displays. For RF noise immunity, an input voltage variation reduction circuit (IVVRC) is adopted to ensure display quality by reducing the undershoot and overshoot of output voltage. The boost converter for a positive voltage Vpos operates in the SPWM-PWM dual mode and has a dead-time controller using a dead-time detector, resulting in increased power efficiency. A chip was fabricated using a 0.18 um BCDMOS process. Measurement results show that power efficiency is 30% ~ 76% for load current range from 1 mA to 100 mA. The boost converter with the IVVRC has an overshoot of 6 mV and undershoot of 4 mV compared to a boost converter without that circuit with 18 mV and 20 mV, respectively.

A Zero-Current-Zero-Voltage-Transition Boost-Flyback Converter Using Auxiliary Circuit (보조 회로를 활용한 ZCZVT 소프트 스위칭 부스트-플라이백 컨버터)

  • Ju, Hyeon-Seung;Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.372-378
    • /
    • 2019
  • This study proposes a new zero-current-zero-voltage-transition (ZCZVT) boost-flyback converter using a soft switching auxiliary circuit. The proposed converter integrates the boost and flyback converters to increase the voltage with a low duty ratio. The main and auxiliary switches turn the ZCZVT conditions on and off. Thus, the proposed converter has high efficiency. The voltage gain at the steady state is derived, and the inductor volt-second balance and the design guidelines are presented. Finally, the performance of the proposed converter is validated by experimental results from a 200 W, 30 V DC input, 400 V DC output, and 200 kHz boost-flyback converter prototype.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Cascaded Boost Type Inverter System for Compensation of Voltage Sag (Voltage Sag 보상을 위한 종속 승압형 인버터 시스템)

  • Lee, Seung-Yong;Seo, Young-Min;Kim, Myeong-Soo;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.352-353
    • /
    • 2011
  • This paper proposes a cascaded boost type inverter system to compensate the voltage sag. If the voltage sag has appeared in input voltage, a cascaded boost converter would be operated to compensate voltage sag. The output voltage is kept constant by a direct-quadrature frame controller in the single-phase PWM inverter. The validity of proposed system is verified by simulation on the 300W cascaded boost type inverter system.

  • PDF