DOI QR코드

DOI QR Code

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications

  • Zhang, Lianghua (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Yang, Xu (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Chen, Wenjie (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Yao, Xiaofeng (School of Electrical Engineering, Xi'an Jiaotong University)
  • Received : 2009.12.09
  • Published : 2010.05.20

Abstract

This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.

Keywords

References

  1. DOE Fuel Cell Handbook, 7th ed., EG&G Technical Services Inc., Morgantown , WV, pp: 8.27-8.44, 2004.
  2. X. Yu, M. R. Starke, L. M. Tolbert, and B. Ozpineci, "Fuel cell power conditioning for electric power applications: a summary," IETElectr. Power Appl., Vol.1, No. 5, pp. 643-656, Sep. 2007. https://doi.org/10.1049/iet-epa:20060386
  3. S. K. Mazumder, R. K. Burra, and K. Acharya, "A ripple-mitigating and energy-efficient fuel cell power-conditioning system," IEEE Trans. Power Electron., Vol. 22, No. 4, pp.1437-1452, Jul. 2007. https://doi.org/10.1109/TPEL.2007.900598
  4. P. T. Krein, R. S. Balog, and G. Xin, "High-frequency link inverter for fuel cells based on multiple-carrier PWM," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1279-1288, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833996
  5. M. Marchesoni, C. Vacca, "New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 301-308, Jan. 2007. https://doi.org/10.1109/TPEL.2006.886650
  6. R. J. Wai, R. Y. Duan, J. D. Lee, and L. W. Liu, "High-efficiency fuelcell power inverter with soft-switching resonant technique," IEEE Trans. Energy Convers., Vol. 20, No. 2, pp. 485-492, Jun. 2005. https://doi.org/10.1109/TEC.2004.832092
  7. G. K. Andersen, C. Klumpner, S. B. Kjær, F. Blaabjerg, "A new power converter for fuel cells with high system efficiency," International Journal of Electronics, Vol. 90, No. 11, pp. 737-750, Nov. 2003. https://doi.org/10.1080/0020721031000666401
  8. R. Gopinath, S.S. Kim, J. H. Hahn, P. N. Enjeti, M. B. Yeary, and J. W. Howze, "Development of a low cost fuel cell inverter system with DSP control," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1256-1262, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833432
  9. S. Jang, C. Won, B. Lee, and J. Hur, "Fuel cell generation system with a new active clamping current-fed half-bridge converter," IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 332-340, Jun. 2007. https://doi.org/10.1109/TEC.2006.874208
  10. X. Kong, A. M. Khambadkone, "Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 543-550, Mar. 2007. https://doi.org/10.1109/TPEL.2006.889985
  11. S. Jung, Y. Bae, S. Choi, and H. Kim, "A low cost utility interactive inverter for residential fuel cell generation," IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2293-2298, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909191
  12. J. Wang, F. Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, "Low cost fuel cell converter system for residential power generation," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1315-1322, Sep. 2004. https://doi.org/10.1109/TPEL.2004.833455
  13. J. L. Duarte, M. Hendrix, and M. G. Sim˜oes, "Three-port bidirectional converter for hybrid fuel cell systems," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 480-487, Mar. 2007. https://doi.org/10.1109/TPEL.2006.889928
  14. J. Lee, J. Jo, S. Choi, and S. B. Han, "A 10-kW SOFC low-voltage battery hybrid power conditioning system for residential use," IEEE Trans. Energy Convers., Vol. 21, No. 2, pp. 575-585, Jun. 2006. https://doi.org/10.1109/TEC.2005.858060
  15. J. S. Lai, S. Y. Park, S. Moon, and C. L. Chen, "A high-efficiency 5- kW soft-switched power conditioning system for low-voltage solid oxide fuel cells," in Proc. PCC '07 Conf., Nagoya Japan, pp. 463-470, 2007.
  16. H. M. Tao, J.L. Duarte, M.A.M. Hendrix, "Line-interactive UPS using a fuel cell as the primary source," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3012-3021, Aug. 2008.
  17. M.H. Todorovic, L. Palma, P.N. Enjeti, "Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion," IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1247-1255, Mar. 2008. https://doi.org/10.1109/TIE.2007.911200
  18. J. M. Kwon, B. H. Kwon, "High step-up active clamp converter with input-current doubler and output-voltage doubler for fuel cell power," IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 108-115, Jan. 2009. https://doi.org/10.1109/TPEL.2008.2006268
  19. K.Jin, X.B. Ruan, "Hybrid full-bridge three-level LLC resonant converter - a novel DC-DC converter suitable for fuel-cell power system," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1492-1503, May 2008.
  20. J. Kikuchi and T. A.Lipo., "Three-phase PWM boost-buck rectifiers with power-regenerating capability," IEEE Trans. Ind. Appl., Vol. 38, No. 5, pp. 1361-1369, Sep. 2002. https://doi.org/10.1109/TIA.2002.802910
  21. C. T. Pan and J. J. Shieh, "A single-stage three-phase boost-buck AC/DC converter based on generlized zero-space vectors," IEEE Trans. Power Electron., Vol. 14, No. 5, pp. 949-958, Sep. 1999. https://doi.org/10.1109/63.788500
  22. P.C.Loh., P.C.Tan., F.Blaabjerg., and T.K.Lee., "Topological development and operational analysis of buck-boost current source inverters for energy conversion applications," in Proc. IEEE PESC'06 Conf., Soul Corea, pp. 1-6, 2006.
  23. C. Klumpner, "A new single-stage current source inverter for photovoltaic and fuel cell applications using reverse blocking IGBTs," in Proc. IEEE PESC'07 Conf. Orlando USA, pp. 1683-1689, 2007.
  24. F. Z. Peng, M. Shen, K. Holland, "Application of Z-source inverter for traction drive of fuel cell - battery hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 22, No. 3, pp. 1054-1061, May 2007. https://doi.org/10.1109/TPEL.2007.897123
  25. D. L. Chen. and L. Li, "Novel static inverters with high frequency pulse DC link," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 971-978, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830048
  26. K. Fukushima, T. Ninomiya, S. Abe, I. Norigoe, Y. Harada, K. Tsukakoshi, and Z. Dai, "Steady-state characteristics of a novel DCAC converter for fuel cells," in Proc. IEEE INTELEC'07 Conf., pp. 904-908, 2007.

Cited by

  1. Performance Improvement of Isolated High Voltage Full Bridge Converter Using Voltage Doubler vol.9, pp.6, 2014, https://doi.org/10.5370/JEET.2014.9.6.2224
  2. Improving the Overall Efficiency for DC/DC Converter with LoV-HiC System vol.12, pp.3, 2012, https://doi.org/10.6113/JPE.2012.12.3.418
  3. Real-time and Power Hardware-in-the-loop Simulation of PEM Fuel Cell Stack System vol.11, pp.2, 2011, https://doi.org/10.6113/JPE.2011.11.2.202
  4. Dual-Loop Power Control for Single-Phase Grid-Connected Converters with LCL Filter vol.11, pp.4, 2011, https://doi.org/10.6113/JPE.2011.11.4.456
  5. Practical Implementation of an Interleaved Boost Converter for Electric Vehicle Applications vol.15, pp.4, 2015, https://doi.org/10.6113/JPE.2015.15.4.1035