Browse > Article
http://dx.doi.org/10.6113/JPE.2010.10.3.235

An Isolated Soft-Switching Bidirectional Buck-Boost Inverter for Fuel Cell Applications  

Zhang, Lianghua (School of Electrical Engineering, Xi'an Jiaotong University)
Yang, Xu (School of Electrical Engineering, Xi'an Jiaotong University)
Chen, Wenjie (School of Electrical Engineering, Xi'an Jiaotong University)
Yao, Xiaofeng (School of Electrical Engineering, Xi'an Jiaotong University)
Publication Information
Journal of Power Electronics / v.10, no.3, 2010 , pp. 235-244 More about this Journal
Abstract
This paper presents a new isolated soft-switching bidirectional buck-boost inverter for fuel cell applications. The buck-boost inverter combines an isolated DC-DC converter with a conventional inverter to implement buck-boost DC-DC and DC-AC conversion. The main switches achieve zero voltage switching and zero current switching by using a novel synchronous switching SVPWM and the volume of the transformer in the forward and fly-back mode is also minimized. This inverter is suitable for wide input voltage applications due to its high efficiency under all conditions. An active clamping circuit reduces the switch's spike voltage and regenerates the energy stored in the leakage inductance of the transformer; therefore, the overall efficiency is improved. This paper presents the operating principle, a theoretical analysis and design guidelines. Simulation and experimental results have validated the characteristics of the buck-boost inverter.
Keywords
Active voltage clamping; Buck-boost inverter; Fuel cell power-conditioning system; Synchronous switching SVPWM;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 G. K. Andersen, C. Klumpner, S. B. Kjær, F. Blaabjerg, "A new power converter for fuel cells with high system efficiency," International Journal of Electronics, Vol. 90, No. 11, pp. 737-750, Nov. 2003.   DOI   ScienceOn
2 D. L. Chen. and L. Li, "Novel static inverters with high frequency pulse DC link," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 971-978, Jul. 2004.   DOI   ScienceOn
3 K. Fukushima, T. Ninomiya, S. Abe, I. Norigoe, Y. Harada, K. Tsukakoshi, and Z. Dai, "Steady-state characteristics of a novel DCAC converter for fuel cells," in Proc. IEEE INTELEC'07 Conf., pp. 904-908, 2007.
4 P.C.Loh., P.C.Tan., F.Blaabjerg., and T.K.Lee., "Topological development and operational analysis of buck-boost current source inverters for energy conversion applications," in Proc. IEEE PESC'06 Conf., Soul Corea, pp. 1-6, 2006.
5 C. Klumpner, "A new single-stage current source inverter for photovoltaic and fuel cell applications using reverse blocking IGBTs," in Proc. IEEE PESC'07 Conf. Orlando USA, pp. 1683-1689, 2007.
6 F. Z. Peng, M. Shen, K. Holland, "Application of Z-source inverter for traction drive of fuel cell - battery hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 22, No. 3, pp. 1054-1061, May 2007.   DOI   ScienceOn
7 J. M. Kwon, B. H. Kwon, "High step-up active clamp converter with input-current doubler and output-voltage doubler for fuel cell power," IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 108-115, Jan. 2009.   DOI   ScienceOn
8 K.Jin, X.B. Ruan, "Hybrid full-bridge three-level LLC resonant converter - a novel DC-DC converter suitable for fuel-cell power system," IEEE Trans. Ind. Electron., Vol. 53, No. 5, pp. 1492-1503, May 2008.
9 C. T. Pan and J. J. Shieh, "A single-stage three-phase boost-buck AC/DC converter based on generlized zero-space vectors," IEEE Trans. Power Electron., Vol. 14, No. 5, pp. 949-958, Sep. 1999.   DOI   ScienceOn
10 J. Kikuchi and T. A.Lipo., "Three-phase PWM boost-buck rectifiers with power-regenerating capability," IEEE Trans. Ind. Appl., Vol. 38, No. 5, pp. 1361-1369, Sep. 2002.   DOI   ScienceOn
11 J. L. Duarte, M. Hendrix, and M. G. Sim˜oes, "Three-port bidirectional converter for hybrid fuel cell systems," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 480-487, Mar. 2007.   DOI   ScienceOn
12 M.H. Todorovic, L. Palma, P.N. Enjeti, "Design of a wide input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion," IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1247-1255, Mar. 2008.   DOI   ScienceOn
13 J. Lee, J. Jo, S. Choi, and S. B. Han, "A 10-kW SOFC low-voltage battery hybrid power conditioning system for residential use," IEEE Trans. Energy Convers., Vol. 21, No. 2, pp. 575-585, Jun. 2006.   DOI   ScienceOn
14 J. S. Lai, S. Y. Park, S. Moon, and C. L. Chen, "A high-efficiency 5- kW soft-switched power conditioning system for low-voltage solid oxide fuel cells," in Proc. PCC '07 Conf., Nagoya Japan, pp. 463-470, 2007.
15 H. M. Tao, J.L. Duarte, M.A.M. Hendrix, "Line-interactive UPS using a fuel cell as the primary source," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3012-3021, Aug. 2008.
16 X. Kong, A. M. Khambadkone, "Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system," IEEE Trans. Power Electron., Vol. 22, No. 2, pp. 543-550, Mar. 2007.   DOI   ScienceOn
17 S. Jung, Y. Bae, S. Choi, and H. Kim, "A low cost utility interactive inverter for residential fuel cell generation," IEEE Trans. Power Electron., Vol. 22, No. 6, pp. 2293-2298, Nov. 2007.   DOI   ScienceOn
18 J. Wang, F. Z. Peng, J. Anderson, A. Joseph, and R. Buffenbarger, "Low cost fuel cell converter system for residential power generation," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1315-1322, Sep. 2004.   DOI   ScienceOn
19 R. Gopinath, S.S. Kim, J. H. Hahn, P. N. Enjeti, M. B. Yeary, and J. W. Howze, "Development of a low cost fuel cell inverter system with DSP control," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1256-1262, Sep. 2004.   DOI   ScienceOn
20 S. Jang, C. Won, B. Lee, and J. Hur, "Fuel cell generation system with a new active clamping current-fed half-bridge converter," IEEE Trans. Energy Convers., Vol. 22, No. 2, pp. 332-340, Jun. 2007.   DOI   ScienceOn
21 P. T. Krein, R. S. Balog, and G. Xin, "High-frequency link inverter for fuel cells based on multiple-carrier PWM," IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1279-1288, Sep. 2004.   DOI   ScienceOn
22 M. Marchesoni, C. Vacca, "New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 22, No. 1, pp. 301-308, Jan. 2007.   DOI   ScienceOn
23 R. J. Wai, R. Y. Duan, J. D. Lee, and L. W. Liu, "High-efficiency fuelcell power inverter with soft-switching resonant technique," IEEE Trans. Energy Convers., Vol. 20, No. 2, pp. 485-492, Jun. 2005.   DOI   ScienceOn
24 S. K. Mazumder, R. K. Burra, and K. Acharya, "A ripple-mitigating and energy-efficient fuel cell power-conditioning system," IEEE Trans. Power Electron., Vol. 22, No. 4, pp.1437-1452, Jul. 2007.   DOI   ScienceOn
25 DOE Fuel Cell Handbook, 7th ed., EG&G Technical Services Inc., Morgantown , WV, pp: 8.27-8.44, 2004.
26 X. Yu, M. R. Starke, L. M. Tolbert, and B. Ozpineci, "Fuel cell power conditioning for electric power applications: a summary," IETElectr. Power Appl., Vol.1, No. 5, pp. 643-656, Sep. 2007.   DOI   ScienceOn