• Title/Summary/Keyword: voltage amplifier

Search Result 824, Processing Time 0.028 seconds

Integrated Rail-to-Rail Low-Voltage Low-Power Enhanced DC-Gain Fully Differential Operational Transconductance Amplifier

  • Ferri, Giuseppe;Stornelli, Vincenzo;Celeste, Angelo
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.785-793
    • /
    • 2007
  • In this paper, we present an integrated rail-to-rail fully differential operational transconductance amplifier (OTA) working at low-supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand-by power dissipation (lower than 0.17 mW in the rail-to-rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 ${\mu}m$), presents a 37 V/${\mu}s$ slew-rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.

  • PDF

Design of Voltage Controlled Oscillator using Miller Effect

  • Choi Moon-Ho;Kim Yeong-Seuk
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.218-220
    • /
    • 2004
  • A new wide-band VCO topology using Miller capacitance is proposed. Contrary to conventional VCO using the Miller capacitance where the variable amplifier gain is negative, the proposed VCO uses both the negative and positive variable amplifier gain to enhance the frequency tuning range significantly. The proposed VCO is simulated using HSPICE. The simulations show that 410MHz and 220MHz frequency tuning range are obtained using the negative .and positive variable amplifier gain, respectively. The tuning range of the proposed VCO is $23\%$ of the center frequency(2.8GHz). The phase noise is -104dBc/Hz at 1MHz offset by simple model. The operating current is only 3.84mA at 2.5V power supply.

  • PDF

Feedback Analysis of Transcutaneous Energy Transmission with a Variable Load Parameter

  • Yang, Tianliang;Zhao, Chunyu;Chen, Dayue
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.548-554
    • /
    • 2010
  • The transcutaneous energy transmission system (TETS) composed of a Class-E amplifier may operate at a state away from the optimum power transmission due to the load variation. By introducing the feedback-loop technique, the TETS can keep the optimum state with constant output voltage by adjusting the important design parameters, that is, the duty ratio and frequency of the driving signal and the supply voltage. The relations between these adjusted parameters and the load are investigated. The effectiveness of the feedback technique is validated through a design example with a variable load parameter. The experimental results show that the Class-E amplifier in the feedback loop can keep operating at the optimum state under the condition of up to 50 percent variation of the load value.

Drift Self-compensating type Flux-meter Using Digital Sample and Hold Amplifier (Digital Sample and Hold 증폭기를 사용한 드리프트 자체 보상형 자속계의 제작)

  • Ka, Eun-Mie;Son, De-Rac
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.332-335
    • /
    • 2005
  • Output voltage of the flux-meter has always drift due to the input bias current of non-ideal operational amplifier. In this study we have employed a digital sample and hold amplifier which has no voltage drop to compensate drift of the flux-meter automatically. The drift of the developed flux-meter was smaller than $5{\times}10^{-8}\;Wb/s$ for the integration time constant of $RC=10^{-3}$ s.

Sensor signal processing device for USN application and general purpose (USN응용과 범용목적에 적용가능한 센서 신호처리기)

  • Park, Chan-Won;Kim, Il-Hwan;Chun, Sam-Sug
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.230-237
    • /
    • 2010
  • In sensor signal conditioning and processing, offset and drift characteristics of an operational amplifier are an important factor when the amplifier is used for a precise sensor signal amplifier. In order to use it in high accuracy, an expensive trimming or a complex compensation circuit is required. This paper presents the improved sensor signal conditioning and processing device for ubiquitous sensor network(USN) application or general purpose by developing a hardware of the circuit for reducing the offset voltage and drift characteristics, and a software for its control and sensor signal processing. We realize better offset voltage and drift characteristics of the signal conditioning circuit using low cost operational amplifiers. The experimental results show that this technique is effective in improving the performance of the sensor signal processing device.

High-Efficiency CMOS Power Amplifier Using Uneven Bias for Wireless LAN Application

  • Ryu, Namsik;Jung, Jae-Ho;Jeong, Yongchae
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.885-891
    • /
    • 2012
  • This paper proposes a high-efficiency power amplifier (PA) with uneven bias. The proposed amplifier consists of a driver amplifier, power stages of the main amplifier with class AB bias, and an auxiliary amplifier with class C bias. Unlike other CMOS PAs, the amplifier adopts a current-mode transformer-based combiner to reduce the output stage loss and size. As a result, the amplifier can improve the efficiency and reduce the quiescent current. The fully integrated CMOS PA is implemented using the commercial Taiwan Semiconductor Manufacturing Company 0.18-${\mu}m$ RF-CMOS process with a supply voltage of 3.3 V. The measured gain, $P_{1dB}$, and efficiency at $P_{1dB}$ are 29 dB, 28.1 dBm, and 37.9%, respectively. When the PA is tested with 54 Mbps of an 802.11g WLAN orthogonal frequency division multiplexing signal, a 25-dB error vector magnitude compliant output power of 22 dBm and a 21.5% efficiency can be obtained.

Amplifier Circuits with Differential Characteristics (미분특성을 갖는 증폭회로)

  • 이영근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.33-37
    • /
    • 1972
  • Amplifier circuits with differential characteristics, that is, amplifier circuits the voltage gain of which are proportional to the complex frequency are described. It is shown that the characteristics of the circuit predicted on the basis of the nullator-norator model of the transistor coincides with the result of the exact analysis of the circuit, and experimental result coincides with the theory.

  • PDF

CMOS Power Amplifier for PCS (PCS 용 CMOS 전력 증폭기)

  • 윤영승;주리아;손영찬;유상대
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1163-1166
    • /
    • 1999
  • In this paper, A CMOS power amplifier for PCS is designed with 0.65-$\mu\textrm{m}$ CMOS technology. Differential cascode structure is used which has good reverse isolation and wide voltage swing. This amplifier circuits consist of three stages which are power amplification stage, driver stage and power control stage. We obtain output power of 30 ㏈m, IMD3 of -31㏈c and efficiency of 30 % at input power of 4 ㏈m.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.