• Title/Summary/Keyword: vitrification process

Search Result 49, Processing Time 0.031 seconds

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

Evaluation of 0ff-gas Characteristics in Vitrification Process of ion-Exchange Resin

  • Park, S. C.;Kim, H. S.;K. H. Yang;C. H. Yun;T. W. Hwang;S. W. Shin
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.83-92
    • /
    • 2001
  • The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9Nm$^3$/h at the burning rate of 40kg/h. And the composition of off-gas was avaluated as $CO_2$(41.4%), steam(40.0%), $O_2$(13.3%), NO(3.6%), and SO$_2$(1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3Nm$^3$/h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin.

  • PDF

Nanocomposite SiEA-KNiFe sorbent - Complete solution from synthesis through radiocesium sorption to vitrification using the sol-gel method

  • Chmielewska, Dagmara;Siwek, Malgorzata;Wawszczak, Danuta;Henczka, Marek;Sartowska, Bozena;Starosta, Wojciech;Dudek, Jakub
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.407-416
    • /
    • 2018
  • This study presents a novel complete solution starting with a synthesis of silica modified with potassium-nickel hexacyanoferrate and ethanolamine (SiEA-KNiFe) sorbent through radiocesium sorption in different process configurations and moving on to the vitrification of the spent sorbent, using the sol-gel method. The experimental data for deionized water solution, as well as seawater solution, correlates strongly with the Langmuir isotherm model. Moreover, the study also presents a method for spent sorbent solidification in the glass matrix. The cesium leaching test confirmed that spent sorbent can be stably bound in the glass matrix after radionuclide removal.

A Case Study on Operation of Off-Gas Treatment System of Radioactive Waste Vitrification Facility (방사성폐기물 유리화설비의 배기가스 처리계통 운영 사례 연구)

  • Lee, Hye Hyun;Park, Kyu Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.249-254
    • /
    • 2016
  • In this study, we investigated the main characteristics of off-gas generated from melting process and off-gas treatment system operation example to provide some primary data for commercial vitrification facility design. The purpose of vitrification facility operation is to treat hazardous materials in the radioactive wastes and harmful off-gas containing a variety of chemical species generated in the glass melting process. Constructing and operating vitrification facility essentially need to be licensed through safety analysis; it is very important to treat radionuclide and hazardous materials below the legal environment emissions regulation level. We must accurately understand the characteristics of off-gas and apply an appropriate off-gas treatment process accordingly. Thus, to design the appropriate off-gas treatment there must be a wide range of elements taken into account such as characteristics of waste and melter, regulation guidance of off-gas, characteristics of generated off-gas and off-gas treatment system performance assessment.

Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process

  • Young Hwan Hwang;Mi-Hyun Lee;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.271-281
    • /
    • 2023
  • A study was conducted on the vitrification of the rare earth oxide waste generated from the PyroGreen process. The target rare earth waste consisted of eight elements: Nd, Ce, La, Pr, Sm, Y, Gd, and Eu. The waste loading of the rare earth waste in the developed borosilicate glass system was 20wt%. The fabricated glass, processed at 1,200℃, exhibited uniform and homogeneous surface without any crystallization and precipitation. The viscosity and electrical conductivity of the melted glass at 1,200℃ were 7.2 poise and 1.1 S·cm-1, respectively, that were suitable for the operation of the vitrification facility. The calculated leaching index of Cs, Co, and Sr were 10.4, 10.6, and 9.8, respectively. The evaluated Product Consistency Test (PCT) normalized release of the glass indicated that the glass satisfied the requirements for the disposal acceptance criteria. Furthermore, the pristine, 90 days water immersed, 30 thermal cycled, and 10 MGy gamma ray irradiated glasses exhibited good compressive strength. The results indicated that the fabricated glass containing rare earth waste from the PyroGreen process was acceptable for the disposal in the repository, in terms of chemical durability and mechanical strength.

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

Vitrification solution without sucrose for cryopreservation in mouse blastocysts

  • Joo, Jong Kil;Lee, Young Ju;Jeong, Ju Eun;Kim, Seung Chul;Ko, Gyoung Rae;Lee, Kyu Sup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.41 no.3
    • /
    • pp.115-119
    • /
    • 2014
  • Objective: This study was designed to investigate the survival rate of vitrified mouse blastocysts depending on the presence or absence of sucrose in vitrification solution. Methods: Mouse two-cell embryos were collected and cultured to blastocysts. Two vitrification solutions were prepared. The control solution was composed of 25% glycerol, 25% ethylene glycol, and 0.5 M sucrose (G25E250.5S) containing 2.5 mL glycerol, 2.5 mL ethylene glycol, 2 mL SSS, and 0.855 g sucrose in 5 mL PB1. The experimental solution was composed of 25% glycerol and 25% ethylene glycol (G25E25) and contained 2.5 mL glycerol and 2.5 mL ethylene glycol in 5 mL PB1. Artificial shrinkage was conducted by aspirating the blastocoelic fluid using an ICSI pipette. To examine the effect of sucrose in the vitrification solution on the survival rate of mouse blastocysts, the shrunken-equilibrated blastocysts were rehydrated or vitrified after being exposed to one of the two vitrification solutions. After exposure and the vitrification-thawing process, the re-expansion rate and hatching rate were evaluated after 6 hours of in vitro culture. Results: The re-expansion rate of mouse blastocysts exposed to vitrification solution with and without sucrose were not different in the experimental solution (without sucrose) (98%) and the control solution (with sucrose) (92%) (p>0.05). The hatching rate was higher in the experimental solution (95%) than in the control solution (88%), but did not differ across two treatments (p>0.05). The re-expansion rate of mouse blastocysts vitrified in the control solution was 92% and 94%, respectively (p>0.05), and the hatching rate was higher in the experimental solution (90%) than in the control solution (74%) (p<0.05). Conclusion: Sucrose need not be added in vitrification solution for freezing of artificially shrunken mouse blastocysts.

A Study on Recycling Technology of Wastes by Using PGV(Plasma Gasification & Vitrification) System (PGV(Plasma Gasification & Vitrification) 시스템을 통한 폐기물의 자원화 기술)

  • Rhyew, David;Kim, Young Suk
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.62-70
    • /
    • 2008
  • PGV(Plasma Gasification & Vitrification) system has been developed based on a pyrolysis melting gasification technology that provides the possibilities of acquiring renewable energy. As volume of wastes increases with the rapid industrialization and population growth, eco friendly disposal is drawing more social attention. Pyrolysis plasma technology is regarded as the best environmentally friendly process for the waste disposal among numerous waste disposal processes. Introduced in this paper is the behavior of the plasma torch and a computational fluid simulation dynamics is discussed for designing the melting furnace. Some PGV applications have also been discussed.

  • PDF

Cryopreservation (Vitrification) of Mouse Embryos (마우스의 배의 동결보존)

  • 강민수
    • Journal of Embryo Transfer
    • /
    • v.6 no.2
    • /
    • pp.30-36
    • /
    • 1991
  • The method of vitnilcation has various merits. It needs neither seeding nor slow freezing. It can freeze embryo by putting it directly into liquid nitrogen at the indoor temperature to $0^{\circ}C$. The operation process is quite easy. Moreover, higher promise of survival can be expected as there is no physical damage by any lumps of ice with the exception of cells. In Kasal's experiment (1990) using EFS liquid and Kang's experiment (1991) using GFS liquid the ratio of the damaged embryo was only 2-3%. But, the method of vitrification is now on the process of improvement, and the final or united method is not yet established. At the present time, most of the major institutes all over the world are using the traditional freezing method in the preservation of mouse embryo, but it is very likely that the vitrification will prevaIl in the near future considering the various merits of it. Calves can be begotten from the embryo by means of vitriilcated preservation in the cases of cow, rat, and rabbit as well as of mouse. In addition, recent experiments have shown that vitrificated preservation was successful in the case of drosophila embryo which was much bigger than mammalian embryo, which fact tells that this method is expected to be preferably used even in the preservation of living organs in the near future.

  • PDF