DOI QR코드

DOI QR Code

Nanocomposite SiEA-KNiFe sorbent - Complete solution from synthesis through radiocesium sorption to vitrification using the sol-gel method

  • Received : 2017.07.20
  • Accepted : 2018.07.15
  • Published : 2018.11.25

Abstract

This study presents a novel complete solution starting with a synthesis of silica modified with potassium-nickel hexacyanoferrate and ethanolamine (SiEA-KNiFe) sorbent through radiocesium sorption in different process configurations and moving on to the vitrification of the spent sorbent, using the sol-gel method. The experimental data for deionized water solution, as well as seawater solution, correlates strongly with the Langmuir isotherm model. Moreover, the study also presents a method for spent sorbent solidification in the glass matrix. The cesium leaching test confirmed that spent sorbent can be stably bound in the glass matrix after radionuclide removal.

Keywords

Acknowledgement

Grant : New nanocoposite sorbent for different radionuclides removal

Supported by : Polish Ministry of Science and Higher Education, JINR

References

  1. V.A. Kashparov, S.M. Lundin, S.I. Zvarych, V.I. Yoshchenko, S.E. Levchuk, Y.V. Khomutinin, I.M. Maloshtan, V.P. Protsak, Sci. Total Environ. 317 (2003) 105. https://doi.org/10.1016/S0048-9697(03)00336-X
  2. K. Inoue, H. Tsuruoka, T.L. Van, M. Fukushi, J. Radioanal. Nucl. Chem. 307 (2016) 507. https://doi.org/10.1007/s10967-015-4164-8
  3. S. Taj, D. Muhammad, M.A. Chaudhry, M. Mazhar, J. Radioanal. Nucl. Chem. 288 (2011) 79. https://doi.org/10.1007/s10967-010-0873-1
  4. K. Shakir, M. Sohsah, M. Soliman, Sep. Purifi. Technol. 54 (2007) 373. https://doi.org/10.1016/j.seppur.2006.10.006
  5. S. Ding, Y. Yang, H. Huang, H. Liu, L.-a. Hou, J. Hazard. Mater. 294 (2015) 27. https://doi.org/10.1016/j.jhazmat.2015.03.056
  6. X. Liu, G.R. Chen, D.J. Lee, T. Kawamoto, H. Tanaka, M.L. Chen, Y.K. Luo, Bioresour. Technol. 160 (2014) 142. https://doi.org/10.1016/j.biortech.2014.01.012
  7. S.M. Liu, H.H. Liu, Y.J. Huang, W.J. Yang, Trans. Nonferrous Met. Soc. China 25 (2015) 329. https://doi.org/10.1016/S1003-6326(15)63608-1
  8. C. Jeon, J. Ind. Eng. Chem. 40 (2016) 93. https://doi.org/10.1016/j.jiec.2016.06.010
  9. R. Kamaraj, S. Vasudevan, Chem. Eng. Res. Des. 93 (2015) 522. https://doi.org/10.1016/j.cherd.2014.03.021
  10. S. Li, Y. Feng, L. Fang, X. Zheng, D. Chen, L. Yao, C. Xiong, Can. J. Chem. 94 (2016) 751. https://doi.org/10.1139/cjc-2016-0113
  11. M. Min, C. Shen, L. Fang, Y. Chang, J. Li, Y. Jiang, C. Xiong, Anal. Methods 8 (2016) 8084. https://doi.org/10.1039/C6AY02846B
  12. C. Shen, Y. Chang, L. Fang, M. Min, C.H. Xiong, New J. Chem. 40 (2016) 3588. https://doi.org/10.1039/C5NJ02703A
  13. V.N. Epimakhov, L.N. Moskvin, V.V. Chetverikov, T.V. Epimakhov, A.F. Ganyushkin, S.V. Prokhorkin, Radiochemistry 52 (2010) 610. https://doi.org/10.1134/S1066362210060093
  14. T. Ozaki, S. Ambe, T. Abe, A.J. Francis, Biol. Trace Elem. Res. 90 (2002) 273. https://doi.org/10.1385/BTER:90:1-3:273
  15. P.N. Pathak, G.R. Choppin, J. Radioanal. Nucl. Chem. 270 (2006) 299. https://doi.org/10.1007/s10967-006-0348-6
  16. N. Kothalawala, J.P. Blitz, V.M. Gun'ko, M. Jaroniec, B. Grabicka, R.F. Semeniuc, J. Colloids Interface Sci. 392 (2013) 57. https://doi.org/10.1016/j.jcis.2012.10.037
  17. J. Orechovska, P. Rajec, J. Radioanal. Nucl. Chem. 242 (1999) 387. https://doi.org/10.1007/BF02345567
  18. M. Ramaswamy, Solvent Extr. Ion Exch. 17 (1999) 1603. https://doi.org/10.1080/07366299908934668
  19. H. Long, P. Wu, N. Zhu, Chem. Eng. J. 225 (2013) 237. https://doi.org/10.1016/j.cej.2013.03.088
  20. D. Chmielewska, L. Stachurska, J. Radioanal. Nucl. Chem. 307 (2016) 1295. https://doi.org/10.1007/s10967-015-4291-2
  21. J. Kitheri, K.V. Govindan Kutty, P. Chandramohan, P.R. Vasudeva Rao, J. Nucl. Mater. 384 (2009) 262. https://doi.org/10.1016/j.jnucmat.2008.11.016
  22. A. Deptula, M. Milkowska, W. Lada, T. Olczak, D. Wawszczak, T. Smolinski, M. Brykala, A. Chmielewski, F. Zaza, K. Goretta, Adv. Mater. Reas. 518-523 (2012) 3216. https://doi.org/10.4028/www.scientific.net/AMR.518-523.3216
  23. A.M.M. Santos, F.S. Lameiras, W.L. Vasconcelos, J. Mater. Process. Technol. 118 (2001) 199. https://doi.org/10.1016/S0924-0136(01)00917-7
  24. T. Vincent, C. Vincent, E. Guibal, Molecules 20 (2015) 20582. https://doi.org/10.3390/molecules201119718
  25. R.R. Sheha, J. Colloid Interface Sci. 388 (2012) 21. https://doi.org/10.1016/j.jcis.2012.08.042
  26. T.D. Clarke, C.M. Wai, Anal. Chem. 70 (1998) 3708. https://doi.org/10.1021/ac971138b
  27. P. Antonetti, Y. Claire, H. Massit, P. Lessart, C. Pham Van Cang, A. Perichaud, J. Anal. Appl. Pyrolysis 55 (2000) 81. https://doi.org/10.1016/S0165-2370(99)00075-3
  28. H.-C. Yang, M.-W. Lee, H.-S. Hwang, J.-K. Moon, D.-Y. Chung, J. Therm. Anal. Calorim. 118 (2014) 1073. https://doi.org/10.1007/s10973-014-3853-9
  29. C.-Y. Chang, L.-K. Chau, W.-P. Hu, C.-Y. Wang, J.-H. Liao, Microporous Mesoporous Mater 109 (2008) 505. https://doi.org/10.1016/j.micromeso.2007.05.057
  30. T. Sangvanich, V. Sukwarotwat, R.J. Wiacek, R.M. Grudzien, E. Fryxell, R.S. Addleman, C. Timchalk, W. Yantasee, J. Hazard. Mater. 182 (2010) 225. https://doi.org/10.1016/j.jhazmat.2010.06.019
  31. Lalhmunsiama, C. Lalhriatpuia, D. Tiwari, S.-M. Lee, Appl. Surf. Sci. 321 (2014) 275. https://doi.org/10.1016/j.apsusc.2014.09.200
  32. M.R. Mahmoud, A.F. Seliman, Appl. Radiat. Isot. 91 (2014) 141. https://doi.org/10.1016/j.apradiso.2014.05.021
  33. A.A. Kadam, J. Jang, D.S. Lee, Bioresour. Technol. 216 (2016) 391. https://doi.org/10.1016/j.biortech.2016.05.103
  34. Y. Kim, Y.K. Kim, S. Kim, D. Harbottle, J.W. Lee, Chem. Eng. J. 313 (2017) 1042. https://doi.org/10.1016/j.cej.2016.10.136
  35. L. Vrtoch, M. Pipiska, M. Hornik, J. Augustin, J. Lesny, J. Radioanal. Nucl. Chem. 287 (2011) 853. https://doi.org/10.1007/s10967-010-0837-5
  36. T. Li, F. He, Y.D. Dai, J. Radioanal. Nucl. Chem. 310 (2016) 1139. https://doi.org/10.1007/s10967-016-4980-5
  37. ASTM D3987-12, Standard Practice for Shake Extraction of Solid Waste with Water, ASTM, Intrernational, West Conshohocken, PA, 2012.
  38. M. Min, C. Shen, L. Fang, B. Zhu, J. Li, L. Yao, Y. Jiang, C. Xiong, Chem. Eng. Res. Des. 117 (2017) 773. https://doi.org/10.1016/j.cherd.2016.11.032
  39. Y.-J. Gu, M.-L. Zhu, Y.-L. Li, C.-H. Xiong, Int. J. Biol. Macromol. 112 (2018) 1175. https://doi.org/10.1016/j.ijbiomac.2018.02.079
  40. H. Mimura, J. Lehto, R. Harjula, J. Nucl. Sci. Technol. 34 (1997) 582. https://doi.org/10.1080/18811248.1997.9733711
  41. M. Mostafa, M. El-Absy, M. Amin, M.A. El-Amir, A.B. Farag, J. Radioanal. Nucl. Chem. 288 (2010) 579.
  42. J. Lehto, S. Haukka, P. Koskinen, M. Blomberg, Thermochim. Acta 160 (1990) 343. https://doi.org/10.1016/0040-6031(90)80275-4
  43. Z.-B. Shao, C. Deng, Y. Tan, M.-J. Chen, L. Chen, Y.-Z. Wang, J. Mater. Chem. A 2 (2014) 13955. https://doi.org/10.1039/C4TA02778G
  44. R.K. Farnsworth, E.D. Larsen, J.W. Sears, T.L. Eddy, G.L. Anderson, Chemical and Mechanical Performance Properties for Various Final Waste Forms - PSPI Scoping Study, Idaho National Engineering Laboratory, Idaho, 1996.
  45. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, J. Environ. Chem. Eng. 2 (2014) 1434. https://doi.org/10.1016/j.jece.2014.07.008
  46. Y.S. Ho, C.T. Huang, H.W. Huang, Process Biochem. 37 (2002) 1421. https://doi.org/10.1016/S0032-9592(02)00036-5
  47. S.V. Mohan, J. Karthikeyan, Environ. Pollut. 97 (1997) 183. https://doi.org/10.1016/S0269-7491(97)00025-0
  48. M. Ojovan, W. Lee, An Introduction to Nuclear Waste Immobilisation, 2nd ed., Elsevier, Oxford, UK, 2013.
  49. M.I. Ojovan, G.A. Varlackova, Z.I. Golubeva, O.N. Burlaka, J. Hazard. Mater. 187 (2011) 296. https://doi.org/10.1016/j.jhazmat.2011.01.004
  50. H. Shalchian, J.V. Khaki, A. Babakhani, M.T. Parizi, Procedia Mater. Sci.11 (2015) 754. https://doi.org/10.1016/j.mspro.2015.11.074

Cited by

  1. Removal of cesium ions from aqueous solutions using various separation technologies vol.18, pp.2, 2019, https://doi.org/10.1007/s11157-019-09499-9