DOI QR코드

DOI QR Code

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Received : 2015.01.29
  • Accepted : 2015.02.11
  • Published : 2015.03.31

Abstract

Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

Keywords

References

  1. J. M. Perez, S. M. Barnes, S. Kelly, L. Petkus, and E. V. Morrey, "Vitrification Testing and Demonstration for the Hanford Waste Treatment and Immobilization Plant," Ceram. Trans., 168 3-19 (2005).
  2. J. M. Perez, Jr., D. F. Bickford, D. E. Day, D. Kim, S. L. Lambert, S. L. Marra, D. K. Peeler, D. M. Strachan, M. B. Triplett, J. D. Vienna, and R. S. Wittman, "High-Level Waste Melter Study Report," PNNL-13582, Pacific Northwest National Laboratory, Richland, WA, 2001. DOI: 10.2172/965722
  3. W. R. Wilmarth, G. J. Lumetta, M. E. Johnson, M. R. Poirier, M. C. Thompson, P. C. Suggs, and N. P. Machara, "Review: Waste-pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes," lvent Extr. Ion Exch., 29 [1] 1-48 (2011). https://doi.org/10.1080/07366299.2011.539134
  4. P. J. Certa, "River Protection Project System Plan-Revision 4," ORP-11242, Washington River Protection Solutions LLC, Richland, WA, 2009. DOI: 10.2172/973951
  5. T. W. Crawford, P. J. Certa, and M. N. Wells, "System Planning with the Hanford Tank Waste Operations Simulator," WRPS-44335-FP, Washington River Protection Solutions LLC, Richland, WA, 2010. (http://www.osti.gov/scitech/servlets/purl/970544)
  6. WTP Contract, Contract DE-AC27-01RV14136, as amended, "Section C Statement of Work," U. S. Department of Energy, Office of River Protection, Richland, WA. (http://www.hanford.gov/page.cfm/DOE-ORPPrimeContracts/BNIContract)
  7. D. Kim, P. Hrma, D. A. Larmar, and M. L Elliott, "Development of High-Waste Loaded High-Level Nuclear Waste Glasses for High-Temperature Melter," Ceram. Trans., 45 39-48 (1994).
  8. J. C. Marra, K. M. Fox, D. K. Peeler, T. B. Edwards, A. L. Youchak, J. H. Gillam, Jr., J. D. Vienna, S. V. Stefanovsky, and A. S. Aloy, "Glass Formulation Development in Support of Melter Testing to Demonstrate Enhanced High Level Waste Throughput," Mater. Res. Soc. Symp. Proc., 1107 231-38 (2008).
  9. D. Kim, M. J. Schweiger, J. D. Vienna, F. C. Johnson, J. C. Marra, D. K. Peeler, and G. L. Smith, "Glass Formulation for Next Generation Cold Crucible Induction Melter," WM'11 proceedings, paper No. 11561. (http://www.wmsym.org/archives/2011/papers/11561.pdf)
  10. G. L. Smith, D. Kim, M. J. Schweiger, J. C. Marra, J. B. Lang, J. V. Crum, C. L. Crawford, and J. D. Vienna, "Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters," PNNL-23288 (EMSP-RPT-021), Pacific Northwest National Laboratory, Richland, WA, 2014. (http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23288.pdf)
  11. K. S. Matlack, M. Chaudhuri, H. Gan, I. S. Muller, W. K. Kot, W. Gong, and I. L. Pegg, "Glass Formulation Testing to Increase Sulfate Incorporation," ORP-51808 (VSL-04R4960-1), U.S. Department of Energy, Office of River Protection, Richland, WA, 2005. DOI: 10.2172/1035193
  12. K. S. Matlack, W. Gong, I. S. Muller, I. Joseph, and I. L. Pegg, "LAW Envelope C Glass Formulation Testing to Increase Waste Loading," ORP-56323 (VSL-05R5900-1), U.S. Department of Energy, Office of River Protection, Richland, WA, 2005. DOI: 10.2172/1109496
  13. K. S. Matlack, H. Gan, W. Gong, I. L. Pegg, C. C. Chapman, and I. Joseph, "High Level Waste Vitrification System Improvements, ORP-56297 (VSL-07R1010-1), U.S. Department of Energy, Office of River Protection, Richland, WA, 2007. DOI: 10.2172/1105982
  14. K. S. Matlack, I. Joseph, W. Gong, I. S. Muller, and I. L. Pegg, "Enhanced LAW Glass Formulation Testing," ORP-56293 (VSL-07R1130-1), U. S. Department of Energy, Office of River Protection, Richland, WA, 2007. DOI: 10.2172/1105974
  15. K. S. Matlack, I. Joseph, W. Gong, I. S. Muller, and I. L. Pegg, "Glass Formulation Development and DM10 Melter Testing with ORP LAW Glasses," ORP-56296 (VSL-09R1510-2), U.S. Department of Energy, Office of River Protection, Richland, WA, 2009. DOI: 10.2172/1105979
  16. K. M. Fox, D. K. Peeler, and T. B. Edwards, "Frit Optimization for Sludge Batch Processing at the Defense Waste Processing Facility," Ceram. Nucl. Appl., Ceram. Eng. Sci. Proc., 30 [10] 185-92 (2010).
  17. K. M. Fox, T. B. Edwards, and J. R. Zamecnik, "Frit Development for Sludge Batch 6," SRNL-STI-2010-00137, Savannah River National Laboratory, Aiken, SC, 2010. DOI: 10.2172/979693
  18. T. B. Edwards, K. G. Brown, and R. L. Postles, "SME Acceptability Determination for DWPF Process Control," WSRC-TR-95-00364, Rev. 4, Savannah River National Laboratory, Aiken, SC, 2002. DOI: 10.2172/805889
  19. K. M. Fox and T. B. Edwards, "The Sludge Batch 7a Glass Variability Study with Frit 418 and Frit 702," SRNL-STI-2011-00063, Savannah River National Laboratory, Aiken, SC, 2011. DOI: 10.2172/1010511
  20. P. Hrma, "Melting of Foaming Batches: Nuclear Waste Glass," Glastechnische Berichte, 63K 360-69 (1990).
  21. D. F. Bickford, P. Hrma, and B. W. Bowen, II, "Control of Radioactive Waste Glass Melters: II, Residence Time and Melt Rate Limitations," J. Am. Ceram. Soc., 73 [10] 2903-15 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb06693.x
  22. D. Kim and P. Hrma, "Laboratory Studies for Estimation of Melting Rate in Nuclear Waste Glass Melters," Ceram. Trans., 45 409-19 (1994).
  23. P. A. Smith, J. D. Vienna, and P. Hrma, "The Effects of Melting Reactions on Laboratory-scale Waste Vitrification," J. Mater. Res., 10 [8] 2137-49 (1995). https://doi.org/10.1557/JMR.1995.2137
  24. J. Matyas, P. Hrma, and D. Kim, "Melt Rate Improvement for High-Level Waste Glass," PNNL-14003, Pacific Northwest National Laboratory, Richland, WA, 2002. DOI: 10.2172/860127
  25. P. Hrma, J. Matyas, and D. Kim, "The Chemistry and Physics of Melter Cold Cap," In: 9th Biennial Int. Conf. on Nuclear and Hazardous Waste Management, Spectrum '02, American Nuclear Society, 2002.
  26. C. Chapman, "Investigation of Glass Bubbling and Increased Production Rate," REP-RPP-069, Rev. 0, Duratek, Richland, WA, 2004.
  27. J. Matyas, P. Hrma, and D. Kim, "Analysis of Feed Melting Processes," Ceram. Trans., 155 69-78 (2004).
  28. J. M. Perez, C. C. Chapman, R. K. Mohr, K. S. Matlack, and I. L. Pegg, "Development and Demonstration of an Air Bubbler Design to Meet High-Level Waste Melter Production Rate Requirements of the Hanford Waste Treat ment and Immobilization Plant" Proceedings of the 10th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM'05, pp. 1324-31, 2005.
  29. I. Joseph, B. W. Bowan II, H. Gan, W. K. Kot, K. S. Matlack, I. L. Pegg, and A. A. K.ruger, "High Aluminum HLW Glasses for Hanford's WTP,"WM'10 proceedings, paper No. 10241, 2010. (http://www.wmsym.org/archives/2010/pdfs/10241.pdf)
  30. K. M. Fox, D. K. Peeler, J. C. Marra, A. Aloy, R. Soshnikov, A. Trofimenko, J. D. Vienna, B. J. Riley, D. Kim, and J. V. Crum, "International Studies of Enhanced Waste Loading and Improved Melt Rate for High Alumina Concentration Nuclear Waste Glasses," Ceram. Trans., 207 81-92 (2009).
  31. D. Kim, M. J. Schweiger, W. C. Buchmiller, and J. Matyas, "Laboratory-Scale Melter for Determination of Melting Rate of Waste Glass Feeds," PNNL-21005 (EMSP-RPT-012), Pacific Northwest National Laboratory, Richland, WA, 2012. DOI: 10.2172/1036924
  32. P. Hrma, M. J. Schweiger, C. J. Humrickhouse, J. A. Moody, R. M. Tate, T. T. Rainsdon, N. E. TeGrotenhuis, B. M. Arrigoni, J. Marcial, C. P. Rodriguez, and B. H. Tincher, "Effect of Glass-Batch Makeup on the Melting Process," Ceram.-Silik., 54 [3] 193-211 (2010).
  33. M. J. Schweiger, P. Hrma, C. J. Humrickhouse, J. Marcial, B. J. Riley, and N. E. TeGrotenhuis, "Cluster Formation of Silica Particles in Glass Batches During Melting," J. Non-Cryst. Solids, 356 [25-27] 1359-67 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.009
  34. S. H. Henager, P. Hrma, K. J. Swearingen, M. J. Schweiger, J. Marcial, and N. E. TeGrotenhuis, "Conversion of Batch to Molten Glass, I: Volume Expansion," J. Non-Cryst. Solids, 357 [3] 829-35 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.102
  35. P. Hrma, J. Marcial, K. J. Swearingen, S. H. Henager, M. J. Schweiger, and N. E. TeGrotenhuis "Conversion of Batch to Molten Glass, II: Dissolution of Quartz Particles," J. Non-Cryst. Solids, 357 [3] 820-28 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.11.096
  36. P. Hrma and J. Marcial, "Dissolution Retardation of Solid Silica During Glass-batch Melting," J. Non-Cryst. Solids, 357 [15] 2954-59 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.03.041
  37. P. Hrma, A. A. Kruger, and R. Pokorny, "Nuclear Waste Vitrification Efficiency: Cold Cap Reactions," J. Non-Cryst. Solids, 358 ,[24], 3559-62 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.01.051
  38. D. A. Pierce, P. Hrma, J. Marcial, B. J. Riley, and M. J. Schweiger, "Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch," Int. J. Appl. Glass Sci., 3 [1] 59-68 (2012). https://doi.org/10.1111/j.2041-1294.2012.00079.x
  39. J. Chun, D. A. Pierce, R. Pokorny, and P. Hrma, "Cold-cap Reactions in Vitrification of Nuclear Waste Glass: Experiments and Modeling," Thermochim. Acta, 559 32-39 (2013). https://doi.org/10.1016/j.tca.2013.02.016
  40. J. Marcial, J. Chun, P. Hrma, and M. J. Schweiger, "Effect of Bubbles and Silica Dissolution on Melter Feed Rheology During Conversion to Glass," Environ. Sci. Technol., 48 [20] 12173-80 (2014). https://doi.org/10.1021/es5018625
  41. C. P. Rodriguez, J. Chun, M. J. Schweiger, A. A. Kruger, and P. Hrma, "Application of Evolved Gas Analysis to Cold-cap Reactions of Melter Feeds for Nuclear Waste Vitrification," Thermochim. Acta, 592 86-92 (2014). https://doi.org/10.1016/j.tca.2014.06.022
  42. R. Pokorny and P. Hrma, "Mathematical Modeling of Cold Cap," J. Nucl. Mater., 429 ,[1-3], 245-56 (2012). https://doi.org/10.1016/j.jnucmat.2012.06.013
  43. R. Pokorny, D. A. Pierce, and P. Hrma, "Melting of Glass Batch: Model for Multiple Overlapping Gas-evolving Reactions," Thermochim. Acta, 541 8-14 (2012). https://doi.org/10.1016/j.tca.2012.04.019
  44. R. Pokorny, J. A. Rice, J. V. Crum, M. J. Schweiger, and P. Hrma, "Kinetic Model for Quartz and Spinel Dissolution During Melting of High-level-waste Glass Batch," J. Nucl. Mater., 443 [1-3] 230-35 (2013). https://doi.org/10.1016/j.jnucmat.2013.07.039
  45. R. Pokorny, J. A. Rice, M. J. Schweiger, and P. Hrma, "Determination of Temperature-Dependent Heat Conductivity and Thermal Diffusivity of Waste Glass Melter Feed," J. Am. Ceram. Soc., 96 [6] 1891-98 (2013). https://doi.org/10.1111/jace.12313
  46. R. Pokorny and P. Hrma, "Model for the Conversion of Nuclear Waste Melter Feed to Glass," J. Nucl. Mater., 445 [1-3] 190-99 (2014). https://doi.org/10.1016/j.jnucmat.2013.11.009
  47. C. M. Jantzen and M. J. Plodinec, "Thermodynamic Model of Natural, Medieval and Nuclear Waste Glass Durability," J. Non-Cryst. Solids, 67 [1-3] 207-23 (1984). https://doi.org/10.1016/0022-3093(84)90151-0
  48. E. Saad, N. L. Laberge, and X. Feng, "Modeling of the Viscosity of Glasses Used in the Immobilization of High-Level Liquid Nuclear Waste," Nucl. Technol., 86 [1] 66-69 (1989).
  49. C. M. Jantzen, "First-Principle Process Product Models for Vitrification of Nuclear Waste: Relationship of Glass Composition to Glass Viscosity, Resistivity, Liquidus Temperature, and Durability," Ceram. Trans., 23 37-51 (1991).
  50. X. Feng and R. B. Metzger, "Glass Durability Model Based on Understanding Glass Chemistry and Structural Configurations of the Glass Constituents," Mater. Res. Soc. Symp. Proc., 432 27-38 (1997).
  51. J. B. Pickett and C. M. Jantzen, "TCLP Leaching Prediction from the "Thermo (TM)" Model for Borosilicate Glasses," Ceram. Trans., 132 323-33 (2002).
  52. A. Grandjean, M. Malki, C. Simonnet, D. Manara, and B. Penelon, "Correlation between Electrical Conductivity, Viscosity, and Structure in Borosilicate Glass-forming Melts," Phys. Rev. B, 75 054112 (2007). https://doi.org/10.1103/PhysRevB.75.054112
  53. C. M. Jantzen and K. G. Brown, "Predicting the Spinel-Nepheline Liquidus for Application to Nuclear Waste Glass Processing. Part II: Quasicrystalline Freezing Point Depression Model," J. Am. Ceram. Soc., 90 [6] 1880-91 (2007). https://doi.org/10.1111/j.1551-2916.2006.01028.x
  54. P. Hrma, G. F. Piepel, M. J. Schweiger, D. E. Smith, D. Kim, P. E. Redgate, J. D. Vienna, C. A. Lopresti, D. B. Simpson, D. K. Peeler, and M. H. Langowski, "Property/Composition Relationships for Hanford High-Level Waste Glasses Melting at 1150$^{\circ}C$," PNL-10359, Pacific Northwest Laboratory, Richland, WA, 1994. DOI: 10.2172/10121755; 10.2172/10121752
  55. D. Kim and P. Hrma, "Models for Liquidus Temperature of Nuclear Waste Glasses," Ceram. Trans., 45 327-37 (1994).
  56. P. Hrma, G. F. Piepel, P. E. Redgate, D. E. Smith, M. J. Schweiger, J. D. Vienna, and D. Kim, "Prediction of Processing Properties for Nuclear Waste Glasses," Ceram. Trans., 61 505-13 (1995).
  57. J. D. Vienna, P. Hrma, M. J. Schweiger, and M. H. Langowski, "Compositional Dependence of Elemental Release from HLW Glasses by the Product Consistency Test: A One Component-at-a-Time Study," Ceram. Trans., 72 307-16 (1996).
  58. J. D. Vienna, P. Hrma , D. Kim, M. J. Schweiger, and D. E. Smith, "Compositional Dependence of Viscosity, Electrical Conductivity, and Liquidus Temperature of Multicomponent Borosilicate Waste Glasses," Ceram. Trans., 72 427-36 (1996).
  59. J. D. Vienna, P. Hrma, M. J. Schweiger, M. H. Langowski, P. E. Redgate, D. Kim, G. F. Peipel, D. E. Smith, C. Y. Chang, D. E. Rinehart, S. E. Palmer, and H. Li, "Effect of Composition and Temperature on the Properties of High-Level Waste (HLW) Glass Melting above $1200^{\circ}C$," PNNL-10987, Pacific Northwest National Laboratory, Richland, WA, 1996. DOI: 10.2172/212394
  60. G. F. Piepel, T. Redgate, and P. Masuga, "Comparison of Mixture Models and Free Energy of Hydration Models for Waste Glass Releases," Glass Technol., 38 [6] 210-15 (1997).
  61. J. D. Vienna, P. Hrma, J. V. Crum, and M. Mika, "Liquidus Temperature-composition Model for Multi-component Glasses in the Fe, Cr, Ni, and Mn Spinel Primary Phase Field," J. Non-Cryst. Solids, 292 [1-3] 1-24 (2001). https://doi.org/10.1016/S0022-3093(01)00874-2
  62. J. D. Vienna, D. Kim, and P. Hrma, "Database and Interim Glass Property Models for Hanford HLW and LAW Glasses," PNNL-14060, Pacific Northwest National Laboratory, Richland, WA, 2002. DOI: 10.2172/15003540
  63. J. D. Vienna, D. Kim, and P. Hrma, "Interim Models Developed To Predict Key Hanford Waste Glass Properties Using Composition," Ceram. Trans., 143 151-57 (2003).
  64. D. Kim and J. D. Vienna, "Glass Composition-TCLP Response Model for Waste Glasses," Ceram. Trans., 155 297-305 (2004).
  65. J. D. Vienna, T. B. Edwards, J. V. Crum, D. Kim, and D. K. Peeler, "Liquidus Temperature and One Percent Crystal Content Models for Initial Hanford HLW Glasses," Ceram. Trans., 168 133-40 (2005).
  66. G. F. Piepel, S. K. Cooley, I. S. Muller, H. Gan, I. Joseph, and I. L. Pegg, "ILAW PCT, VHT, Viscosity, and Electrical Conductivity Model Development," VSL-07R1230-1, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C., 2007. DOI: 10.2172/1110826
  67. G. F. Piepel, S. K. Cooley, A. Heredia-Langner, S. M. Landmesser, W. K. Kot, H. Gan, and I. L. Pegg, "IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development," VSL-07R1240-4, Rev. 0, Vitreous State Laboratory, The Catholic University of America, Washington, D.C., 2008. DOI: 10.2172/1105987
  68. G. F. Piepel, A. Heredia-Langner, and S. K. Cooley, "Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction," J. Am. Ceram. Soc., 91 [10] 3222-28 (2008). https://doi.org/10.1111/j.1551-2916.2008.02590.x
  69. J. D. Vienna, A. Fluegel, D-S. Kim, and P. Hrma, "Glass Property Data and Models for Estimating High-Level Waste Glass Volume," PNNL-18501, Pacific Northwest National Laboratory, Richland, WA, 2009. DOI: 10.2172/971447
  70. J. D. Vienna, D-S. Kim, D. C. Skorski, and J. Matyas, "Glass Property Models and Constraints for Estimating the Glass to Be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts," PNNL-22631, Pacific Northwest National Laboratory, Richland, WA, 2013.
  71. D. Kim, P. Hrma, S. E. Palmer, D. E. Smith, and M. J. Schweiger, "Effect of $B_2O_3$, CaO, and $Al_2O_3$ on the Chemical Durability of Silicate Glasses for Hanford Low-Level Waste Immobilization," Ceram. Trans., 61 531-38 (1995).
  72. M. I. Ojovan, "Viscosity and Glass Transition in Amorphous Oxides," Adv. Condens. Matter Phys., Article ID 817829 (2008). DOI: 10.1155/2008/817829
  73. P. Hrma, "High-temperature Viscosity of Commercial Glasses," Ceram.-Silik., 50 [2] 57-66 (2006).
  74. P. Hrma, "Arrhenius Model for High-temperature Glassviscosity with a Constant Pre-exponential Factor," J. Non-Cryst. Solids, 354 [18] 1962-68 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.11.016
  75. P. Hrma, "Glass Viscosity as a Function of Temperature and Composition: A Model Based on Adam-Gibbs Equation," J. Non-Cryst. Solids, 354 [29] 3389-99 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.02.019
  76. P. H. Hrma, B. M. Arrigoni, and M. J. Schweiger, "Viscosity of Many Component Glasses," J. Non-Cryst. Solids, 355 [14-15] 891-902 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.03.005
  77. P. H. Hrma and S. Han, "Effect of Glass Composition on Activation Energy of Viscosity in Glass-melting-temperature Range," J. Non-Cryst. Solids, 358 [15] 1118-29 (2012).
  78. A. Fluegel, A. K. Varshneya, D. A. Earl, T. P. Seward, and D. Oksoy, "Improved Composition-Property Relations in Silicate Glasses, Part I: Viscosity," Ceram. Trans., 170, 129-43 (2005).
  79. A. Fluegel, "Glass Viscosity Calculation Based on a Global Statistical Modeling Approach," Glass Technol.: Eur. J. Glass Sci. Technol. A, 48 [1] 13-30 (2007).
  80. L. A. Chick and G.F. Piepel, "Statistically Designed Optimization of Glass Composition," J. Am. Ceram. Soc., 67 [11] 763-68 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19514.x
  81. G. F. Piepel, C. M. Anderson, and P. E. Redgate, "Response Surface Designs for Irregularly-Shaped Regions (Parts 1, 2, and 3)," Proceedings of the Section on Physical and Engineering Sciences 1993, pp. 205-27, American Statistical Association, Alexandria, VA, 1993.
  82. G. F. Piepel and J. A. Cornell, "Mixture Experiment Approaches-Examples, Discussion, and Recommendations, J. Qual. Technol., 26 [3] 177-96 (1994).
  83. G. F. Piepel and T. Redgate, "Mixture Experiment Techniques for Reducing the Number of Components Applied for Modeling Waste Glass Sodium Release," J. Am. Ceram. Soc., 80 [12] 3038-44 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03230.x
  84. J. A. Cornell, Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, Third Ed., John Wiley and Sons, New York, NY, 2002.
  85. S. K. Cooley, G. F. Piepel, H. Gan, W. Kot, and I. L. Pegg "A Two-Stage Layered Mixture Experiment Design for a Nuclear Waste Glass Application-Part 1 and Part 2," In 2003 ASA Proceedings. Papers presented at the Annual Meeting of the American Statistical Association. Joint Statistical Meetings, San Francisco, California, August 3-7, pp. 1036-43 (Part 1) and 1044-51 (Part 2), American Statistical Association, Alexandria, VA, 2003.
  86. D. Kim and J. D. Vienna, "Preliminary ILAW Formulation Algorithm Description," 24590-LAW-RPT-RT-04-0003, Rev. 1, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA, 2012.
  87. J. D. Vienna and D. Kim, "Preliminary IHLW Formulation Algorithm Description," 24590-HLW-RPT-RT-05-001, Rev 1, River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant, Richland, WA, 2014.
  88. ASTM-American Society of Testing and Materials, "Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT)," ASTM C 1285-14, American Society of Testing and Materials, 2014.
  89. EPA-U. S. Environmental Protection Agency, "Test Methods for Evaluation of Solid Waste Physical/Chemical Methods," SW-846, 3rd. ed., as amended, U. S. Environmental Protection Agency, Washington, D. C, 1997.
  90. ASTM-American Society of Testing and Materials, "Standard Test Methods for Measuring Waste Glass or Glass Ceramic Durability by Vapor Hydration Test," ASTM C 1663-09, American Society of Testing and Materials, 2009.
  91. D. K. Peeler, T. H. Lorier, and J. D. Vienna, "Melt Rate Improvement for DWPF MB3: Foaming Theory and Mitigation Techniques," WSRC-RP-2001-00351, Westinghouse Savannah River Company, Aiken, Savannah River Technology Center, SC, 2001. DOI: 10.2172/783820
  92. D. Kim, P. Hrma, D. E. Smith, and M. J. Schweiger, "Crystallization in Simulated Glasses from Hanford High-Level Nuclear Waste Composition Range," Ceram. Trans., 39 179-89 (1993).
  93. P. Izak, P. Hrma, B. W. Arey, and T. J. Plaisted, "Effect of Feed Melting, Temperature History, and Minor Component Addition on Spinel Crystallization in High-level Waste Glass," J. Non-Cryst. Solids, 289 [1-3] 17-29 (2001). https://doi.org/10.1016/S0022-3093(01)00705-0
  94. J. Alton, T. J. Plaisted, and P. Hrma, "Dissolution and Growth of Spinel Crystals in a Borosilicate Glass," J. Non-Cryst. Solids, 311 [1] 24-35 (2002). https://doi.org/10.1016/S0022-3093(02)01325-X
  95. P. Hrma, J. Matyas, and D. Kim, "Evaluation of Crystallinity Constraint for HLW Glass Processing," Ceram. Trans., 143 133-40 (2003).
  96. P. Hrma, "Crystallization During Processing of Nuclear Waste Glass," J. Non-Cryst. Solids, 356 [52-54] 3019-25 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.03.039
  97. J. Matyas, J. D. Vienna, D. Peeler, K. Fox, C. Herman, and A. A. Kruger, "Road Map for Development of Crystal-Tolerant High Level Waste Glasses," PNNL-23363, Pacific Northwest National Laboratory, Richland, WA, 2014. DOI: 10.2172/1149233
  98. D. Kim, D. K. Peeler, and P. Hrma, "Effect of Crystallization on the Chemical Durability of Simulated Nuclear Waste Glasses," Ceram. Trans., 61 177-85 (1995).
  99. H. Li, J. D. Vienna, P. Hrma, D. E. Smith, and M. J. Schweiger, "Nepheline Precipitation in High-Level Waste Glasses: Compositional Effects and Impact on the Waste Form Acceptability," Mater. Res. Soc. Symp. Proc., 465 261-68 (1997).
  100. D. F. Bickford and C. M. Jantzen, "Devitrification of SRL Defense Waste Glass," Mater. Res. Soc. Symp. Proc., 26 557-65 (1984).
  101. H. Li, P. Hrma, J. D. Vienna, M. Quin, Y. Su, and D. E. Smith, "Effects of $Al_2O_3$, $B_2O_3$, $Na_2O$, and $SiO_2$ on Nepheline Formation in Borosilicate Glasses: Chemical and Physical Correlations," J. Non-Cryst. Solids, 331 [1-3] 202-16 (2003). https://doi.org/10.1016/j.jnoncrysol.2003.08.082
  102. J. S. McCloy and J. D. Vienna, "Glass Composition Constraint Recommendations for Use in Life-Cycle Mission Modeling," PNNL-19372, Pacific Northwest National Laboratory, Richland, WA, 2010. DOI: 10.2172/978973
  103. J. S. McCloy, M. J. Schweiger, C. P. Rodriguez, and J. D. Vienna, "Nepheline Crystallization in Nuclear Waste Glasses: Progress Toward Acceptance of High-Alumina Formulations," Int. J. Appl. Glass Sci., 2 [3] 201-14 (2011). https://doi.org/10.1111/j.2041-1294.2011.00055.x
  104. J. D. Darab D. D. Graham, B. D. MacIsaac, R. L. Russell, D. K. Peeler, H. D. Smith, and J. D Vienna, "Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report," PNNL-13588, Pacific Northwest National Laboratory, Richland, WA, 2001. DOI: 10.2172/965662
  105. P. Hrma, J. D. Vienna, and J. S. Ricklefs, Mechanism of Sulfate Segregation During Glass Melting; Vol. 757, pp. 147-52, Materials Research Society Symposium Proceedings, 2003.
  106. P. Hrma, J. D. Vienna, W. C. Buchmiller, and J. S. Ricklefs, "Sulfate Retention during Waste Glass Melting," Ceram. Trans., 155 93-99 (2004).
  107. P. Hrma, J. D. Vienna, B. K. Wilson, T. J. Plaisted, and S. M. Heald, "Chromium Phase Behavior in a Multi-component Borosilicate Glass Melt," J. Non-Cryst. Solids, 352 [21-22] 2114-22 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.02.051
  108. J. D. Vienna, D. Kim, I. S. Muller, G. F. Piepel, and A. A. Kruger, "Toward Understanding the Effect of Nuclear Waste Glass Composition on Sulfur Solubility," J. Am. Ceram. Soc., 98 [10] 3135-42 (2014).
  109. L. R. Bunnell, "Laboratory Work in Support of West Valley Glass Development," PNL-6539, Pacific Northwest Laboratory, Richland, WA, 1988. DOI: 10.2172/5196678
  110. D. Kim, M. J. Schweiger, C. P. Rodriguez, W. C. Lepry, J. B. Lang, J. V. Crum, J. D. Vienna, F. C. Johnson, J. C. Marra, and D. K. Peeler, "Formulation and Characterization of Waste Glasses with Varying Processing Temperature," PNNL-20774 (EMSP-RPT-009), Pacific Northwest National Laboratory, Richland, WA, 2011. DOI: 10.2172/1028572
  111. D. Kim and J. D. Vienna, "Influence of Glass Property Restrictions on Hanford HLW Glass Volume," Ceram. Trans., 132 105-15 (2002).
  112. P. J. Certa, T. M. Hohl, A. M. Johnson, S. L. Orcutt, R. S. Wittman, and D. Kim, "Sensitivity of Hanford Immobilized High-Level Waste Glass Mass To Chromium and Aluminum Partitioning Assumptions," RPP-20003, Rev. 1, CH2M Hill Hanford Group, Inc., Richland, Washington, 2005. DOI: 10.2172/837967

Cited by

  1. Melter feed viscosity during conversion to glass: Comparison between low‐activity waste and high‐level waste feeds vol.101, pp.5, 2018, https://doi.org/10.1111/jace.15352
  2. A crucible salt saturation method for determining sulfur solubility in glass melt pp.20411286, 2018, https://doi.org/10.1111/ijag.12366
  3. Nonlinear relationship between the Product Consistency Test (PCT) response and the Al/B ratio in a soda-lime aluminoborosilicate glass vol.474, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2016.02.017
  4. Effects of sulfate on rhenium incorporation into low-activity waste glass vol.521, pp.None, 2015, https://doi.org/10.1016/j.jnoncrysol.2019.119528
  5. Impacts of constraints and uncertainties on projected amount of Hanford low-activity waste glasses vol.385, pp.None, 2015, https://doi.org/10.1016/j.nucengdes.2021.111543
  6. Effect of chlorine and chromium on sulfur solubility in low‐activity waste glass vol.13, pp.1, 2015, https://doi.org/10.1111/ijag.16540