• 제목/요약/키워드: vision-based method

검색결과 1,469건 처리시간 0.024초

무인 컨테이너 운반차량의 장애물 인식을 위한 물체의 위치 및 변위 검출에 관한 연구 (A Study on Detection of Object Position and Displacement for Obstacle Recognition of UCT)

  • 이진우;이영진;조현철;손주한;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.321-332
    • /
    • 1999
  • It is important to detect objects movement for obstacle recognition and path searching of UCT(unmanned container transporters) with vision sensor. This paper shows the method to draw out objects and to trace the trajectory of the moving object using a CCD camera and it describes the method to recognize the shape of objects by neural network. We can transform pixel points to objects position of the real space using the proposed viewport. This proposed technique is used by the single vision system based on floor map.

  • PDF

An Efficient Vision-based Object Detection and Tracking using Online Learning

  • Kim, Byung-Gyu;Hong, Gwang-Soo;Kim, Ji-Hae;Choi, Young-Ju
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.285-288
    • /
    • 2017
  • In this paper, we propose a vision-based object detection and tracking system using online learning. The proposed system adopts a feature point-based method for tracking a series of inter-frame movement of a newly detected object, to estimate rapidly and toughness. At the same time, it trains the detector for the object being tracked online. Temporarily using the result of the failure detector to the object, it initializes the tracker back tracks to enable the robust tracking. In particular, it reduced the processing time by improving the method of updating the appearance models of the objects to increase the tracking performance of the system. Using a data set obtained in a variety of settings, we evaluate the performance of the proposed system in terms of processing time.

정밀한 3차원 데이터를 얻기 위한 확대경 사용에 관한 연구 (A study of using the magnifying lens to detect the detail 3D data)

  • 차국찬
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.41-47
    • /
    • 2006
  • 레이저를 이용하는 거리 기반법은 상세한 3D 데이터를 얻기 쉬운 반면 영상 기반법은 그렇지 않다. 영상 기반법에서 상세한 데이터를 얻기 위해 확대경을 채용하는 새로운 방법이 본 논문에서 제시된다. 확대경은 스테레오 비젼 시스템에서의 disparity를 증폭시키고 disparity의 증폭은 깊이 해상도를 증가시킨다. 확대경을 통해서 disparity가 증폭됨을 수학적으로. 실험적으로 증명하고 확대경으로 얻은 상세 데이터로 원 3D 데이터를 개선시키는 방법을 제시한다.

  • PDF

Robust Real-time Object Detection on Construction Sites Using Integral Channel Features

  • Kim, Jinwoo;Chi, Seokho
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.304-309
    • /
    • 2015
  • On construction sites, it is important to monitor the performance of construction equipment and workers to achieve successful construction project management; especially, vision-based detection methods have advantages for the real-time site data collection for safety and productivity analyses. Although many researchers developed vision-based detection methods with acceptable performance, there are still limitations to be addressed: 1) sensitiveness to the shape and appearance changes of moving objects in difference working postures, and 2) high computation time. To deal with the limitations, this paper proposes a detection algorithm of construction equipment based on Integral Channel Features. For validation, 16,850 frames of video streams were recorded and analyzed. The results showed that the proposed method worked in high performance in terms of accuracy and processing time. In conclusion, the developed method can help to understand useful site information including working pattern, working time and input manpower analyses.

  • PDF

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

  • Sharma, Kajal;Saifullah, Saifullah;Moon, Inkyu
    • Journal of information and communication convergence engineering
    • /
    • 제12권2호
    • /
    • pp.128-134
    • /
    • 2014
  • In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching technique to perform efficient matching between the different images. The experiments are performed on various image sets to examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast feature matching due to the optimization of the GPU.

반도체 웨이퍼 고속 검사를 위한 GPU 기반 병렬처리 알고리즘 (The GPU-based Parallel Processing Algorithm for Fast Inspection of Semiconductor Wafers)

  • 박영대;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제19권12호
    • /
    • pp.1072-1080
    • /
    • 2013
  • In a the present day, many vision inspection techniques are used in productive industrial areas. In particular, in the semiconductor industry the vision inspection system for wafers is a very important system. Also, inspection techniques for semiconductor wafer production are required to ensure high precision and fast inspection. In order to achieve these objectives, parallel processing of the inspection algorithm is essentially needed. In this paper, we propose the GPU (Graphical Processing Unit)-based parallel processing algorithm for the fast inspection of semiconductor wafers. The proposed algorithm is implemented on GPU boards made by NVIDIA Company. The defect detection performance of the proposed algorithm implemented on the GPU is the same as if by a single CPU, but the execution time of the proposed method is about 210 times faster than the one with a single CPU.

비전 기반 움직임 영역 탐지를 이용한 전차 승무원 보호 시스템 개발 (Development of a Tank Crew Protection System Using Moving Object Area Detection from Vision based)

  • 최광모;장동식
    • 한국군사과학기술학회지
    • /
    • 제8권2호
    • /
    • pp.14-21
    • /
    • 2005
  • This paper describes the system for detecting the tank crew's(loader's) hand, arm, head and the upper half of the body in a danger area between the turret ceiling and the upper breech mechanism by computer vision-based method. This system informs danger of pressed to death to gunner and commander for the safety of operating mission. The camera mounted ort the top portion of the turret ceiling. The system sets search moving object from this image and detects by using change of image, laplacian operator and clustering algorithm in this area. It alarms the tank crews when it's judged that dangerous situation for operating mission. The result In this experiment shows that the detection rate maintains in $81{\sim}98$ percents.

머쉰비전기반 자동검사를 위한 대상 이미지 검출 (Detection of Object Images for Automatic Inspection based on Machine Vision)

  • 홍승우;홍승범;이규호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.211-213
    • /
    • 2019
  • 본 논문은 머쉰비전기반 자동검사를 위한 대상 이미지영상 검출에 관한 연구결과로서, 영상카메라에 의한 자동 비전검사의 과정에서 요구되는 시험대상물의 위치와 방향에 상관없이 검사대상의 영상을 검출하는 방법을 제안한다. 본 연구에서는 검사대상으로서 와이어 하네스 제조과정에서 실제 적용할 수 있는 기술과 방법을 개발하여 실제 시스템으로 구현한 결과를 제시한다.

  • PDF

인공신경망과 비전 시스템을 이용한 자동차용 오일씰의 검사 (Inspection of Automotive Oil-Seals Using Artificial Neural Network and Vision System)

  • 노병국;김기대
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.83-88
    • /
    • 2004
  • The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.