
 128

I. INTRODUCTION

Feature selection and matching is a key component in

many computer vision tasks, such as path finding, obstacle
detection, navigation, and stereo vision [1-4]. Several
strategies have been already proposed for keypoint detection
[5, 6]. Schmid and Mohr [7] used Harris corners as interest
points in image recognition problems to match features
against a large database of images. This method allows
features to be matched under arbitrary orientation changes,
but it is sensitive to image scaling. Lowe [8] proposed a
scale-invariant feature transform (SIFT) descriptor for the
extraction of interest points from an image that is invariant
to both scale and rotation. The SIFT technique, however,
uses a 128-dimensional vector to describe the SIFT feature
that is computationally intensive. In a recent research [9],

we have implemented an efficient feature matching
technique, which is faster than Lowe’s SIFT, with a self-
organizing map (SOM) that can be used for real-time stereo
matching applications. In this paper, we extended our
research and implement the proposed method with graphics
processing units (GPUs) to further optimize the execution
time.

Due to the advancements of parallel processing techniques,
multi-core CPU methods are widely used to accelerate
computationally intensive tasks [10]. Modern programmable
graphics hardware contains powerful co-processing GPUs
with a peak performance of hundreds of GigaFLOPS, which
is an order of magnitude higher than that of the CPUs [11].
For accelerating computer vision applications, many
researchers are now exploiting parallelism supported by
modern programmable graphics hardware that provides a

Received 09 December 2013, Revised 18 March 2014, Accepted 09 April 2014
*Corresponding Author Inkyu Moon (E-mail: inkyu.moon@chosun.ac.kr, Tel: +82-62-230-6033)
Department of Computer Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.2.128 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li-censes/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(2): 128-134, Jun. 2014 Regular paper

GPU-Based Optimization of Self-Organizing Map Feature
Matching for Real-Time Stereo Vision

Kajal Sharma, Saifullah, and Inkyu Moon*, Member, KIICE
Department of Computer Engineering, Chosun University, Gwangju 501-759, Korea

Abstract
In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching
between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching
applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a
matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of
keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching
technique to perform efficient matching between the different images. The experiments are performed on various image sets to
examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The
experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast
feature matching due to the optimization of the GPU.

Index Terms: Feature matching, Graphics processing unit, Self-organizing map, Stereo vision

Open Access

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

http://jicce.org 129

great scope for acceleration to run computations in parallel
[12, 13]. Some researchers also use specialized and
reconfigurable hardware to speed up these algorithms [14-
16]. One example is discovering concurrency in parallel
computing, where coloring is used to identify subtasks that
can be carried out or data elements that can be updated
simultaneously [17]. Yet another example of coloring is the
efficient computation of sparse derivative matrices [18].
With the increasing programmability and computational
power of GPUs, the recent work by Sinha et al. [10]
accelerates some parts of the SIFT algorithm by using the
hardware capacities of the GPU. A 10× speedup was
obtained, which makes this technique feasible for video
applications [10]. A variety of computer vision algorithms
have been parallelized, providing significant acceleration to
the computation [10, 12, 13].

In this paper, we present a technique that is designed to
achieve fast feature matching in images with the use of
neural networks and GPUs. Our contribution is the proposal
of a GPU-optimized matching technique based on
Kohonen’s SOM [19]. The presented method provides a
significant reduction of computation time as compared to
Lowe’s SIFT. In our approach, the scale space for keypoint
extraction is configured in parallel for detecting the
candidate points among which the number of keypoints is
reduced with the SOM neural network. The descriptor
vector generation is accelerated by the GPU, and matching
is accomplished on the basis of competitive learning. The
key idea is to optimize keypoint extraction with a GPU and
to reduce the descriptor size with the winning calculation
method. Similar winning pixels in the images are found and
associated to accomplish feature matching. The proposed
method using a GPU is faster as multi-processing is used.

The rest of this paper is organized as follows: Section II
gives a brief overview of stereo vision. The procedure of
feature matching with the GPU-optimized method is
presented in Section III. Experimental results are shown in
Section IV, while Section V presents the conclusions.

II. STEREO VISION

Stereo vision is based on acquisition of three-dimensional
(3D) data from different views obtained by a single moving
camera or a fixed arrangement of several cameras. The 3D
position of an object is determined by triangulating the
optical rays from at least two views of the same object point.
Optical axes of two camera-lens units are configured in
parallel, and the straight line joining the two optical centers
is parallel to each image’s horizontal line in order to meet
the epipolar constraint (Fig. 1). The 3D image data are
obtained on the basis of the position of the points in the left
and the right images [20].

Fig. 1. Stereo vision system acquiring three-dimensional (3D) object point.

The coordinates of a 3D point P of the object (X, Y, Z) are

as follows:

() (), , ,
2 2
L R L Re X X e Y Y efX Y Z
d d d
+ +

= = =

(1)

where e denotes the distance between two optical centers, f
indicates the focal length of the two lens, and δ refers to the
disparity of P. Disparity is defined as the difference in the
location of the object point between the left image and the
right image. (XL,YL) and (XR,YR) are the coordinates of the
projection of the point P in two images, left and right,
respectively (Fig. 1). The disparity is given by δ = (XL - XR),
i.e., the difference in position in the left and the right images.

III. PROPOSED GPU-OPTIMIZED MATCHING

TECHNIQUE

In this section, we explain the proposed GPU-based
method to optimize image matching along with the SOM
methodology. The GPU is a special-purpose processing unit
with a single instruction multiple thread parallel architecture.
With the advent of multi-core CPUs and many-core GPUs,
mainstream processor chips are now parallel systems.
Moreover, their parallelization continues to scale with
Moore’s law. Compute unified device architecture (CUDA)
considers GPU hardware as an independent platform that
can provide a programming environment and minimize the
need for understanding the graphics pipeline. A GPU
hardware chip has N multiprocessors (MPs), and each MP
has M scalar processors. The GPU memory is divided into
global, shared, and constant. In addition to the three main
memories, there are registers, which are on-chip memories
(Fig. 2(a)). Variables that reside in registers are accessed at a
very high speed in a highly parallel manner. Registers are
allocated to individual threads; each thread can only access
its own registers [21]. A kernel function typically uses
registers to hold the frequently accessed variables that are

J. lnf. Commun. Converg. Eng. 12(2): 128-134, Jun. 2014

http://dx.doi.org/10.6109/jicce.2014.12.2.128 130

private to each thread. When the kernel function to be
executed with CUDA is ready, a one-block grid must be
configured. The block generates a large number of threads
to share data with the other threads that ensure parallel
processing. The thread is composed of hierarchical SIMD
architecture, and a collection of threads is called a thread
block, or simply, a block. After the allocation of memory
and transferring of data to the GPU, these thread blocks are
initialized to execute the assigned parallel jobs. The GPU
executes multiple threads in parallel and independently
processes vector streams. Fig. 2(b) shows the graphic
framework of our proposed GPU-based method for feature
matching with SIFT and SOM.

Fig. 2. Graphics processing unit (GPU) architecture. (a) Memory, thread,
and block organization, (b) GPU graphics framework.

Fig. 3. Gaussian convolution in RGBA 16-GPU format for odd and even
samples.

The parts executing on the GPU that would mainly

reduce the computation time are described in subsections
III-A and III-B. The streams of instructions and fragments
(pixels) are designed to be processed in parallel on the
GPU with a peak performance of GFLOPS (GigaFLOPS).
Fragment processors perform the role of computational
kernels, and different computational steps are often mapped
to different fragment programs [10]. Texture mapping on
the GPU is analogous to the CPU’s random read-only
memory interface; the fragment processors apply a
fragment program (a pixel shader) to each fragment in the
stream in order to compute the final color of each pixel.
The GPU processes the pixels with parallel processing by
the fragment processors and calculates the four color
values at once as a vector. The image data are rearranged
into a four-channel RGBA image where one color value in
the RGBA image represents a 2 × 2 block of the gray-level
image, thereby reducing the image size by 4. The RGBA
image is processed on the GPU, and the fragment shader
arranges them into one RGBA image format (Fig. 3). The
Gaussian convolution is directly applied to the RGBA
image format where the Gaussian kernel consists of even
and odd values to perform semi-convolutions, which are
added further to form the final result. The calculations are
performed in the fragment shader, and the computational
overhead is low because of the rearrangement of the image
in the RGBA image format.

A. Parallel Scale Space Configuration and

Construction of the Descriptor

In our approach, the construction of a Gaussian scale
space is accelerated by the GPU by using fragment
programs. In order to extract the candidate keypoint, the
scale space L(x, y, σ) is computed in parallel by the
convolution of the variable-scale Gaussian G(x, y, σ) over
the input image I(x, y) as follows:

2 2 2() / 2
2

(, ,) (, ,) (,)
1 (,),

2
x y

L x y G x y I x y

e I x ys

s s

ps
- +

= *

= *

(2)

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

http://jicce.org 131

Fig. 4. Pseudo-code of the presented algorithm.

where * denotes the convolution operation in x and y. Stable
keypoint locations in the scale space can be computed from
the difference of Gaussians (DOG) separated by a constant
multiplicative factor k given by

(, ,) ((, ,) (, ,)) (,)
(, ,) (, ,).

L x y G x y k G x y I x y
L x y k L x y

s s s
s s

= - *
= -

 (3)

The intensity image, gradients, and the DOG values are

stored in the RGBA packed format and computed in parallel
in the same passage by using vector operations in the
fragment programs. The Hessian matrix H(x, y, σ) is
computed by the second-order derivative of the Gaussian
blurred image as follows:

(, ,) (, ,)

(, ,) ,
(, ,) (, ,)

xx xy

xy yy

L x y L x y
H x y

L x y L x y
s s

s
s s

é ù
= ê ú
ë û

 (4)

where Lxy denotes the second-order derivative of the
Gaussian image in both horizontal and vertical directions.
An equal number of threads is assigned σ1,…, σn according
to the number of given variables scaled for Gaussian
operations in order to simultaneously construct individual
pyramids of m octaves. Let mI be the number of features
detected in I and D be the dimension of the descriptors (D =
128). A texture of size mI × D is created and filled with the
mI descriptor values, each one occupying a column.

Fig. 5. Complete algorithm of the suggested approach. GPU: graphics
processing unit, SOM: self-organizing map, DOG: difference of Gaussians.

B. Winner-Based Image Matching and

Acceleration Using GPU

We use the SOM algorithm to map high-dimensional
keypoints to a lower dimensional space by using competitive
learning [8]. The pseudo-code of the proposed algorithm is
shown in Fig. 4. Fig. 5 summarizes the complete algorithm.

To optimize the algorithm, the descriptor and the locator
section are implemented on the GPU in order to solve
the complexity of feature matching that consumes a
considerable amount of time to obtain the descriptor vector.
To this end, keypoints are scanned to obtain the descriptor
and locator vector that can run in parallel on the GPU. In the
initial stage, a function reads an image that returns the SIFT
keypoints, which consist of locators and descriptors of an
image that are stored in a temporary file. The temporary file
is then processed separately for the scanning and
organization of the locators and descriptors. The scanning
and organization of the locators and descriptors is carried
out in a parallel manner on the GPU. The processors consist
of a front-end that reads/decodes the data, which is
responsible for allocating memory on the GPU and
transferring data from the CPU to the GPU, and initializes
the kernel instructions. A backend is made up of a group of
eight calculating units and two super-function units where
instructions are executed in the SIMD mode; the same
instruction is sent to all threads in the warp. NVIDIA calls
this mode of execution ‘single instruction multiple threads
(SIMT)’. The streaming multiprocessors’ operating mode is
as follows:

1. In the imagei, let the weights of the node for each feature point
that are corresponding to pixels at (i, j) with intensity
be .
A pixel is randomly selected from the imagei+1, and feeds
the corresponding descriptor vector as an input to the SOM network.
Let the input descriptor vector corresponding to pixels at (m,n) be

.

2. The (x,y) winner node represents the pixel in imagei that could be
a match for the (m,n)th pixel in imagei+1:

3. Let M and N be the height and the width of the image.
The first two components of all neuron weight vectors are updated
as follows:

where

and

for k =1, 2, and "i, mÎ{1, 2,…, M}, "j, nÎ{1, 2,…, N}, the standard
learning rate is , and the neighborhood parameters are
that control the disparity propagation rate in the topological
neighborhood. The above steps are repeated Nx times where
Nx =100´MN.

4. For each pixel (i, j), the disparity vector is defined as
corresponding to the vertical and horizontal

disparity.

3
ijw

1 2 3(, ,)ij ij ijw w w

1 2 3(, ,)ij ij ija a a

3
2

, 1
(,) arg min () .ij mn

k ki j k
x y w a

=

= -å

()()((,) ()(),ij ij m i n j ij
k k k k k kw w h i j g I wa ¢ ¢+ +¢ ¢¬ + D -

2 2

2, (,) exp
2k k

hk

i ji i x j j yh i j h
s

æ ö¢ ¢+¢ ¢ ¢ ¢= - = - = -ç ÷
è ø2

3 32

()() exp ()
2

xy ij
k

gk

Ig I I w w
s

æ öD
D = - D = -ç ÷ç ÷

è ø

kh ,hk gks s

(,)ij ij
p qd d

1 2; ,ij ij ij ij
q pd i w d j w= - = -

J. lnf. Commun. Converg. Eng. 12(2): 128-134, Jun. 2014

http://dx.doi.org/10.6109/jicce.2014.12.2.128 132

1) At each cycle, a warp ready for execution is selected by
the front-end, which starts execution of an instruction.

2) To send the instruction to all 32 threads in the warp, the
backend will take four cycles, but since it operates at
double the frequency of the front-end, from its point of
view, only two cycles will be executed.

The presented approach uses scale invariant feature

vectors instead of an image database as an input to the SOM
network. A topological map is obtained with the use of
the SOM network, and we obtain a 2D neuron grid where
each neuron is associated with a weight vector containing
128 element descriptors. The 128-dimensional descriptor
generation is accelerated using the GPU in order to increase
the execution speed of the algorithm. The descriptor vector
is read, and its value is recorded individually in an array;
further, the total value is recorded using built-in libraries.
The value is later used as a limit for declaring threads and
blocks for the GPU. As per the limit of each block, only 512
threads can be accommodated in each block and there can
be a total of 65535 blocks in the grid. Each value is assigned
to each thread in the block, and the number of blocks
depends on the total value divided by 512 (number of
threads). An inspection of the temporary file containing the
keypoints of each image indicates that the first four values
are the locator values followed by the 128 descriptor values.
The GPU threads are employed to arrange these locator and
descriptor values accordingly.

For image matching, we use a learning algorithm based
on the concept of the nearest neighbor learning. One image
is considered the reference and the next image as the
matching image. Both images are represented in terms of
the winning neurons in the SOM network as explained in
the pseudo-code. After the network is trained, input data are
distributed throughout the grid of neurons. The feature
vectors are arranged according to their internal similarity
with the SOM, thereby forming a topological map of the
input vectors. The winning neuron is found for each pixel of
the next image, and the pixel value is associated to it once
the winner is found. Feature matching is performed by
associating the similar winning pixels between the pixels of
the reference image and its neighbor image. By iteratively
repeating these steps, winning pixels are obtained with the
SOM and the matching between the pixels of the different
image pairs is accomplished.

IV. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
show the performance of the proposed method. Experiments
were performed using images captured with a Kinect
camera designed by Microsoft; the experimental details and

results of two test image sets are as follows: each image set
contained 15 different images, and the performance of the
proposed GPU-based method was compared with that of
Lowe’s method and that of the SOM-based feature matching
method [9]. For a comparative analysis of the execution
performance, the algorithm was run on a CPU and a GPU
independently. Experiments were conducted on an Intel
Core i3 processor endowed with an NVIDIA GPU, GeForce
310 with a global memory of 512 MB. The CUDA, proposed
by NVIDIA for its graphics processors, exposes a
programming model that integrates the host (CPU) and the
GPU codes in the same code source files. The main pro-
gramming introduced by the programming model is an
explicitly parallel function invocation (kernel), which is
executed by a user-specified number of threads.

Fig. 6. Test image set 1: feature matching between image 1 and image
2 under varying conditions. (a) Matching between two images, (b) rotation
of 30°, (c) scaling with a 0.5 scale factor, and (d) blurring.

Fig. 7. Test image set 2: feature matching between image 8 and image
9 under varying conditions. (a) Matching between two images, (b) rotation
of 30°, (c) scaling with a 0.5 scale factor, and (d) blurring.

GPU-Based Optimization of Self-Organizing Map Feature Matching for Real-Time Stereo Vision

http://jicce.org 133

Table 1. Comparison results for test image set 1 with Lowe’s method,
SOM-based feature matching method [9], and the proposed GPU-based
method

No. Set of images
Lowe’s method SOM-based feature

matching [9]
(CPU)

Proposed
GPU-based

method CPU GPU [10]
1 Images 1 & 2 0.1285 0.0156 0.0141 0.0017
2 Images 2 & 3 0.1345 0.0162 0.0156 0.0016
3 Images 3 & 4 0.1058 0.0177 0.0141 0.0017
4 Images 4 & 5 0.1456 0.0199 0.0167 0.0015
5 Images 5 & 6 0.1206 0.0182 0.0134 0.0014
6 Images 6 & 7 0.1612 0.0166 0.0141 0.0016
7 Images 7 & 8 0.1598 0.0199 0.0161 0.0018
8 Images 8 & 9 0.1701 0.0194 0.0145 0.0017
9 Images 9 & 10 0.1234 0.0182 0.0121 0.0014
10 Images 10 & 11 0.1314 0.0192 0.013 0.0015
11 Images 11 & 12 0.1456 0.0181 0.0145 0.0017
12 Images 12 & 13 0.1267 0.0133 0.0141 0.0017
13 Images 13 & 14 0.1312 0.0131 0.0154 0.0016
14 Images 14 & 15 0.1687 0.0155 0.0146 0.0016

GPU: graphics processing unit, SOM: self-organizing map.

Table 2. Comparison results for test image set 2 with Lowe’s method,
SOM-based feature matching method [9], and the proposed GPU-based
method

No. Set of images
Lowe’s method SOM-based feature

matching [9]
(CPU)

Proposed
GPU-based

method CPU GPU [10]
1 Images 1 & 2 0.1365 0.0152 0.017 0.0019
2 Images 2 & 3 0.1412 0.0165 0.0162 0.0018
3 Images 3 & 4 0.1484 0.018 0.0167 0.0018
4 Images 4 & 5 0.1586 0.0183 0.0176 0.0019
5 Images 5 & 6 0.1707 0.0169 0.0191 0.0021
6 Images 6 & 7 0.1698 0.0191 0.0183 0.0021
7 Images 7 & 8 0.1613 0.0201 0.0181 0.002
8 Images 8 & 9 0.1688 0.0187 0.0187 0.0018
9 Images 9 & 10 0.1568 0.0178 0.0151 0.0017
10 Images 10 & 11 0.1514 0.0182 0.0176 0.0019
11 Images 11 & 12 0.1595 0.0179 0.0169 0.0019
12 Images 12 & 13 0.0968 0.0111 0.01112 0.0013
13 Images 13 & 14 0.1062 0.0123 0.0133 0.0016
14 Images 14 & 15 0.1077 0.0117 0.0134 0.0016

GPU: graphics processing unit, SOM: self-organizing map.

Every CUDA kernel is explicitly invoked by the host
code and executed by the device, while the host side code
continues the execution asynchronously after instantiating
the kernel. The image size for the two test image sets is 480
× 380 pixels. Experiments were conducted under varying
situations, such as rotation, scaling, and blurring conditions.
Figs. 6 and 7 show the matching results for two image sets
obtained using Lowe’s method and with the SOM-based
feature matching method [9]. The proposed method achieves
the same matching results as those described in [9] with
much less computation time. It is found that the average
matching time is 0.13953 s for Lowe’s SIFT, while for the
SOM-based feature matching method [9], it is 0.01447
seconds, which is reduced to 0.00165 seconds by using the
proposed GPU-based method.

Using the SOM-based feature matching [9] method, we
can accelerate Lowe’s algorithm by nine times on average,
and yet another nine times by using the proposed GPU-
based method. Thus, the presented GPU-based method

yields a performance improvement of approximately 90
times. Tables 1 and 2 show the comparison results of the
computation time on two image sets for different images, in
the cases of the Lowe’s method, SOM-based feature
matching method [9], and the proposed GPU-based method.
Experimental results show that the SOM-based feature
matching method [9] performs more efficient matching than
Lowe’s SIFT. A significant reduction in the computation
time is obtained by using the proposed GPU-based method.

V. CONCLUSIONS

This paper presents a matching method to obtain the
features under varying conditions with reduced processing
time. The computation time of the proposed method is
reduced as compared to Lowe’s method and further optimized
by using a GPU. Experiments on various test images have
been carried out to evaluate how well the presented method
performs on the matching problem as compared to Lowe’s
method. Experimental results show that the proposed
method produces better matching results with a significant
reduction in computation times.

REFERENCES

[1] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in

computational stereo,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 8, pp. 993-1008, 2003.

[2] T. Pribanic, N. Obradovic, and J. Salvi, “Stereo computation
combining structured light and passive stereo matching,” Optics
Communications, vol. 285, no. 6, pp. 1017-1022, 2012.

[3] C. H. Lee, Y. C. Lim, S. Kwon, and J. H. Lee, “Stereo vision–
based vehicle detection using a road feature and disparity
histogram,” Optical Engineering, vol. 50, no. 2, pp. 027004-
027004, 2011.

[4] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 24, no. 4, pp. 509-522,
2002.

[5] J. Shi and C. Tomasi, “Good features to track,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Seattle, WA, pp. 593-600, 1994.

[6] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest
point detectors,” International Journal of Computer Vision, vol.
60, no. 1, pp. 63-86, 2004.

[7] C. Schmid and R. Mohr, “Local grayvalue invariants for image
retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 5, pp. 530-534, 1997.

[8] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91-110, 2004.

[9] K. Sharma, S. G. Kim, and M. P. Singh, “An improved feature

J. lnf. Commun. Converg. Eng. 12(2): 128-134, Jun. 2014

http://dx.doi.org/10.6109/jicce.2014.12.2.128 134

matching technique for stereo vision applications with the use of
self-organizing map,” International Journal of Precision
Engineering and Manufacturing, vol. 13, no. 8, pp. 1359-1368,
2012.

[10] S. N. Sinha, J. M. Frahm, M. Pollefeys, and Y. Genc, “Feature
tracking and matching in video using programmable graphics
hardware,” Machine Vision and Applications, vol. 22, no. 1, pp.
207-217, 2011.

[11] K. A. Bjorke, “Image processing on parallel GPU pixel units,”
Proceedings of SPIE, vol. 6065, pp. 606515, 2006.

[12] J. Fung and S. Mann, “OpenVIDIA: parallel GPU computer
vision,” in Proceedings of the 13th Annual ACM international
conference on Multimedia, Singapore, pp. 849-852, 2005.

[13] R. Yang and M, Pollefeys, “Multi-resolution real-time stereo on
commodity graphics hardware,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, Madison, WI, pp. 211-217, 2003.

[14] C. Zach, K. Karner, and H. Bischof, “Hierarchical disparity
estimation with programmable graphics hardware,” in
Proceedings of the 12th International Conference in Central
Europe on Computer Graphics, Visualization and Computer
Vision, Plzen-Bory, Czech Republic, pp. 275-282, 2004.

[15] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-
time video analysis on an embedded smart camera for traffic

surveillance,” in Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium, Toronto,
Canada, pp. 174-181, 2004.

[16] S. Klupsch, M. Ernst, S. A. Huss, M. Rumpf, and R. Strzodka,
“Real time image processing based on reconfigurable hardware
acceleration,” in Proceedings of the IEEE Workshop
Heterogeneous Reconfigurable Systems on Chip (SoC), Hamburg,
Germany, p. 1-7, 2002.

[17] M. T. Jones and P. E. Plassmann, “Scalable iterative solution of
sparse linear systems,” Parallel Computing, vol. 20, no. 5, pp.
753-773, 1994.

[18] Y. Saad, “ILUM: a multi-elimination ILU preconditioner for
general sparse matrices,” SIAM Journal on Scientific
Computing, vol. 17, no. 4, pp. 830-847, 1996.

[19] T. Kohonen, “The self-organizing map,” Proceedings of the
IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.

[20] G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A.
Broggi, “Vehicle detection by means of stereo vision-based
obstacles features extraction and monocular pattern analysis,” IEEE
Transactions on Image Processing, vol. 15, no. 8, pp. 2364-2375,
2006.

[21] D. Kirk and W. Hwu, Programming Massively Parallel
Processors: A Hands-On Approach. Burlington, MA: Morgan
Kaufmann Publisher, 2010.

received her B.E. in Computer Engineering from University of Rajasthan, India, in 2005, and her M.Tech. and Ph.D.
in Computer Science from Banasthali University, Rajasthan, India, in 2007 and 2010, respectively. From October
2010 to September 2011, she worked as a postdoctoral researcher at Kongju National University, Korea. Since
October 2011, she has been working as a postdoctoral researcher at the School of Computer Engineering, Chosun
University, Gwangju, Korea. Her research interests include image and video processing, neural networks, computer
vision, and robotics. She has published many research papers in various national and international journals and
conferences.

received his B.E. in Electronics Engineering from N.E.D University of Engineering and Technology, Pakistan, in
2011, and his M.S. in Computer Engineering from Chosun University, Gwangju, Korea, in 2013. From September
2011 to June 2013, he worked as a graduate research assistant in the 3D Image Processing Lab of the Computer
Engineering Department of Chosun University under the supervision of Dr. Inkyu Moon. As a research assistant,
Mr. Saifullah worked on symmetrical cryptography, digital holographic encryption, neural network algorithms, and
acceleration of these algorithms on a graphics processing unit. His research interests include image processing,
neural networks, algorithm implementation, and computer vision. He has published research papers in various
international conferences.

received his B.S. and M.S. in Electronics Engineering from Sungkyunkwan University, Korea, in 1996 and 1998,
respectively, and his M.S. and Ph.D. in Electrical and Computer Engineering from University of Connecticut in 2007.
From January 2008 to January 2009, he was a researcher in a post-doctoral position at the University of Connecticut.
He joined Chosun University, Korea, in 2009, and is currently, an associate professor at the School of Computer
Engineering. He has to his credit more than 50 publications, including 30+ peer reviewed journal articles and 20+
conference proceedings (10+ Keynote Addresses and invited conference papers). Dr. Moon is a member of IEEE,
OSA, and SPIE. He is on the Editorial Board of the Korea Multimedia Society.

