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I. INTRODUCTION 
 
Feature selection and matching is a key component in 

many computer vision tasks, such as path finding, obstacle 
detection, navigation, and stereo vision [1-4]. Several 
strategies have been already proposed for keypoint detection 
[5, 6]. Schmid and Mohr [7] used Harris corners as interest 
points in image recognition problems to match features 
against a large database of images. This method allows 
features to be matched under arbitrary orientation changes, 
but it is sensitive to image scaling. Lowe [8] proposed a 
scale-invariant feature transform (SIFT) descriptor for the 
extraction of interest points from an image that is invariant 
to both scale and rotation. The SIFT technique, however, 
uses a 128-dimensional vector to describe the SIFT feature 
that is computationally intensive. In a recent research [9], 

we have implemented an efficient feature matching 
technique, which is faster than Lowe’s SIFT, with a self-
organizing map (SOM) that can be used for real-time stereo 
matching applications. In this paper, we extended our 
research and implement the proposed method with graphics 
processing units (GPUs) to further optimize the execution 
time. 

Due to the advancements of parallel processing techniques, 
multi-core CPU methods are widely used to accelerate 
computationally intensive tasks [10]. Modern programmable 
graphics hardware contains powerful co-processing GPUs 
with a peak performance of hundreds of GigaFLOPS, which 
is an order of magnitude higher than that of the CPUs [11]. 
For accelerating computer vision applications, many 
researchers are now exploiting parallelism supported by 
modern programmable graphics hardware that provides a 
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Abstract 
In this paper, we present a graphics processing unit (GPU)-based matching technique for the purpose of fast feature matching 
between different images. The scale invariant feature transform algorithm developed by Lowe for various feature matching 
applications, such as stereo vision and object recognition, is computationally intensive. To address this problem, we propose a 
matching technique optimized for GPUs to perform computations in less time. We optimize GPUs for fast computation of 
keypoints to make our system quick and efficient. The proposed method uses a self-organizing map feature matching 
technique to perform efficient matching between the different images. The experiments are performed on various image sets to 
examine the performance of the system under varying conditions, such as image rotation, scaling, and blurring. The 
experimental results show that the proposed algorithm outperforms the existing feature matching methods, resulting in fast 
feature matching due to the optimization of the GPU.  
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great scope for acceleration to run computations in parallel 
[12, 13]. Some researchers also use specialized and 
reconfigurable hardware to speed up these algorithms [14-
16]. One example is discovering concurrency in parallel 
computing, where coloring is used to identify subtasks that 
can be carried out or data elements that can be updated 
simultaneously [17]. Yet another example of coloring is the 
efficient computation of sparse derivative matrices [18]. 
With the increasing programmability and computational 
power of GPUs, the recent work by Sinha et al. [10] 
accelerates some parts of the SIFT algorithm by using the 
hardware capacities of the GPU. A 10× speedup was 
obtained, which makes this technique feasible for video 
applications [10]. A variety of computer vision algorithms 
have been parallelized, providing significant acceleration to 
the computation [10, 12, 13]. 

In this paper, we present a technique that is designed to 
achieve fast feature matching in images with the use of 
neural networks and GPUs. Our contribution is the proposal 
of a GPU-optimized matching technique based on 
Kohonen’s SOM [19]. The presented method provides a 
significant reduction of computation time as compared to 
Lowe’s SIFT. In our approach, the scale space for keypoint 
extraction is configured in parallel for detecting the 
candidate points among which the number of keypoints is 
reduced with the SOM neural network. The descriptor 
vector generation is accelerated by the GPU, and matching 
is accomplished on the basis of competitive learning. The 
key idea is to optimize keypoint extraction with a GPU and 
to reduce the descriptor size with the winning calculation 
method. Similar winning pixels in the images are found and 
associated to accomplish feature matching. The proposed 
method using a GPU is faster as multi-processing is used.  

The rest of this paper is organized as follows: Section II 
gives a brief overview of stereo vision. The procedure of 
feature matching with the GPU-optimized method is 
presented in Section III. Experimental results are shown in 
Section IV, while Section V presents the conclusions. 
 

II. STEREO VISION 
 

Stereo vision is based on acquisition of three-dimensional 
(3D) data from different views obtained by a single moving 
camera or a fixed arrangement of several cameras. The 3D 
position of an object is determined by triangulating the 
optical rays from at least two views of the same object point. 
Optical axes of two camera-lens units are configured in 
parallel, and the straight line joining the two optical centers 
is parallel to each image’s horizontal line in order to meet 
the epipolar constraint (Fig. 1). The 3D image data are 
obtained on the basis of the position of the points in the left 
and the right images [20]. 

 
Fig. 1. Stereo vision system acquiring three-dimensional (3D) object point. 

 
 
The coordinates of a 3D point P of the object (X, Y, Z) are 

as follows: 
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where e denotes the distance between two optical centers, f 
indicates the focal length of the two lens, and δ refers to the 
disparity of P. Disparity is defined as the difference in the 
location of the object point between the left image and the 
right image. (XL,YL) and (XR,YR) are the coordinates of the 
projection of the point P in two images, left and right, 
respectively (Fig. 1). The disparity is given by δ = (XL - XR), 
i.e., the difference in position in the left and the right images.  
 
 
III. PROPOSED GPU-OPTIMIZED MATCHING 

TECHNIQUE 
 

In this section, we explain the proposed GPU-based 
method to optimize image matching along with the SOM 
methodology. The GPU is a special-purpose processing unit 
with a single instruction multiple thread parallel architecture. 
With the advent of multi-core CPUs and many-core GPUs, 
mainstream processor chips are now parallel systems. 
Moreover, their parallelization continues to scale with 
Moore’s law. Compute unified device architecture (CUDA) 
considers GPU hardware as an independent platform that 
can provide a programming environment and minimize the 
need for understanding the graphics pipeline. A GPU 
hardware chip has N multiprocessors (MPs), and each MP 
has M scalar processors. The GPU memory is divided into 
global, shared, and constant. In addition to the three main 
memories, there are registers, which are on-chip memories 
(Fig. 2(a)). Variables that reside in registers are accessed at a 
very high speed in a highly parallel manner. Registers are 
allocated to individual threads; each thread can only access 
its own registers [21]. A kernel function typically uses 
registers to hold the frequently accessed variables that are 
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private to each thread. When the kernel function to be 
executed with CUDA is ready, a one-block grid must be 
configured. The block generates a large number of threads 
to share data with the other threads that ensure parallel 
processing. The thread is composed of hierarchical SIMD 
architecture, and a collection of threads is called a thread 
block, or simply, a block. After the allocation of memory 
and transferring of data to the GPU, these thread blocks are 
initialized to execute the assigned parallel jobs. The GPU 
executes multiple threads in parallel and independently 
processes vector streams. Fig. 2(b) shows the graphic 
framework of our proposed GPU-based method for feature 
matching with SIFT and SOM. 

  
 

 

 
Fig. 2. Graphics processing unit (GPU) architecture. (a) Memory, thread, 
and block organization, (b) GPU graphics framework. 

 
Fig. 3. Gaussian convolution in RGBA 16-GPU format for odd and even 
samples. 

 
 
The parts executing on the GPU that would mainly 

reduce the computation time are described in subsections 
III-A and III-B. The streams of instructions and fragments 
(pixels) are designed to be processed in parallel on the 
GPU with a peak performance of GFLOPS (GigaFLOPS). 
Fragment processors perform the role of computational 
kernels, and different computational steps are often mapped 
to different fragment programs [10]. Texture mapping on 
the GPU is analogous to the CPU’s random read-only 
memory interface; the fragment processors apply a 
fragment program (a pixel shader) to each fragment in the 
stream in order to compute the final color of each pixel. 
The GPU processes the pixels with parallel processing by 
the fragment processors and calculates the four color 
values at once as a vector. The image data are rearranged 
into a four-channel RGBA image where one color value in 
the RGBA image represents a 2 × 2 block of the gray-level 
image, thereby reducing the image size by 4. The RGBA 
image is processed on the GPU, and the fragment shader 
arranges them into one RGBA image format (Fig. 3). The 
Gaussian convolution is directly applied to the RGBA 
image format where the Gaussian kernel consists of even 
and odd values to perform semi-convolutions, which are 
added further to form the final result. The calculations are 
performed in the fragment shader, and the computational 
overhead is low because of the rearrangement of the image 
in the RGBA image format. 

 
A. Parallel Scale Space Configuration and 

Construction of the Descriptor 
 

In our approach, the construction of a Gaussian scale 
space is accelerated by the GPU by using fragment 
programs. In order to extract the candidate keypoint, the 
scale space L(x, y, σ) is computed in parallel by the 
convolution of the variable-scale Gaussian G(x, y, σ) over 
the input image I(x, y) as follows:  
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Fig. 4. Pseudo-code of the presented algorithm. 

 

where * denotes the convolution operation in x and y. Stable 
keypoint locations in the scale space can be computed from 
the difference of Gaussians (DOG) separated by a constant 
multiplicative factor k given by 
 

( , , ) ( ( , , ) ( , , )) ( , )
( , , ) ( , , ).
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s s s
s s
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    (3) 

 
The intensity image, gradients, and the DOG values are 

stored in the RGBA packed format and computed in parallel 
in the same passage by using vector operations in the 
fragment programs. The Hessian matrix H(x, y, σ) is 
computed by the second-order derivative of the Gaussian 
blurred image as follows:  

 
( , , ) ( , , )

( , , ) ,
( , , ) ( , , )

xx xy

xy yy

L x y L x y
H x y

L x y L x y
s s

s
s s

é ù
= ê ú
ë û

   (4) 

where Lxy denotes the second-order derivative of the 
Gaussian image in both horizontal and vertical directions. 
An equal number of threads is assigned σ1,…, σn according 
to the number of given variables scaled for Gaussian 
operations in order to simultaneously construct individual 
pyramids of m octaves. Let mI be the number of features 
detected in I and D be the dimension of the descriptors (D = 
128). A texture of size mI × D is created and filled with the 
mI descriptor values, each one occupying a column. 

 
Fig. 5. Complete algorithm of the suggested approach. GPU: graphics 
processing unit, SOM: self-organizing map, DOG: difference of Gaussians. 
 
B. Winner-Based Image Matching and 

Acceleration Using GPU 
 

We use the SOM algorithm to map high-dimensional 
keypoints to a lower dimensional space by using competitive 
learning [8]. The pseudo-code of the proposed algorithm is 
shown in Fig. 4. Fig. 5 summarizes the complete algorithm. 

To optimize the algorithm, the descriptor and the locator 
section are implemented on the GPU in order to solve 
the complexity of feature matching that consumes a 
considerable amount of time to obtain the descriptor vector. 
To this end, keypoints are scanned to obtain the descriptor 
and locator vector that can run in parallel on the GPU. In the 
initial stage, a function reads an image that returns the SIFT 
keypoints, which consist of locators and descriptors of an 
image that are stored in a temporary file. The temporary file 
is then processed separately for the scanning and 
organization of the locators and descriptors. The scanning 
and organization of the locators and descriptors is carried 
out in a parallel manner on the GPU. The processors consist 
of a front-end that reads/decodes the data, which is 
responsible for allocating memory on the GPU and 
transferring data from the CPU to the GPU, and initializes 
the kernel instructions. A backend is made up of a group of 
eight calculating units and two super-function units where 
instructions are executed in the SIMD mode; the same 
instruction is sent to all threads in the warp. NVIDIA calls 
this mode of execution ‘single instruction multiple threads 
(SIMT)’. The streaming multiprocessors’ operating mode is 
as follows:  

1. In the imagei, let the weights of the node for each feature point
that are corresponding to pixels at (i, j) with intensity
be .
A pixel is randomly selected from the imagei+1, and feeds
the corresponding descriptor vector as an input to the SOM network.
Let the input descriptor vector corresponding to pixels at (m,n) be

.

2. The (x,y) winner node represents the pixel in imagei that could be
a match for the (m,n)th pixel in imagei+1:

3. Let M and N be the height and the width of the image.
The first two components of all neuron weight vectors are updated
as follows:

where

and

for k =1, 2, and "i, mÎ{1, 2,…, M}, "j, nÎ{1, 2,…, N}, the standard
learning rate is , and the neighborhood parameters are
that control the disparity propagation rate in the topological
neighborhood. The above steps are repeated Nx times where
Nx =100´MN.

4. For each pixel (i, j), the disparity vector is defined as 
corresponding to the vertical and horizontal

disparity.

3
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1) At each cycle, a warp ready for execution is selected by 
the front-end, which starts execution of an instruction.  

2) To send the instruction to all 32 threads in the warp, the 
backend will take four cycles, but since it operates at 
double the frequency of the front-end, from its point of 
view, only two cycles will be executed.  

 
The presented approach uses scale invariant feature 

vectors instead of an image database as an input to the SOM 
network. A topological map is obtained with the use of 
the SOM network, and we obtain a 2D neuron grid where 
each neuron is associated with a weight vector containing 
128 element descriptors. The 128-dimensional descriptor 
generation is accelerated using the GPU in order to increase 
the execution speed of the algorithm. The descriptor vector 
is read, and its value is recorded individually in an array; 
further, the total value is recorded using built-in libraries. 
The value is later used as a limit for declaring threads and 
blocks for the GPU. As per the limit of each block, only 512 
threads can be accommodated in each block and there can 
be a total of 65535 blocks in the grid. Each value is assigned 
to each thread in the block, and the number of blocks 
depends on the total value divided by 512 (number of 
threads). An inspection of the temporary file containing the 
keypoints of each image indicates that the first four values 
are the locator values followed by the 128 descriptor values. 
The GPU threads are employed to arrange these locator and 
descriptor values accordingly. 

For image matching, we use a learning algorithm based 
on the concept of the nearest neighbor learning. One image 
is considered the reference and the next image as the 
matching image. Both images are represented in terms of 
the winning neurons in the SOM network as explained in 
the pseudo-code. After the network is trained, input data are 
distributed throughout the grid of neurons. The feature 
vectors are arranged according to their internal similarity 
with the SOM, thereby forming a topological map of the 
input vectors. The winning neuron is found for each pixel of 
the next image, and the pixel value is associated to it once 
the winner is found. Feature matching is performed by 
associating the similar winning pixels between the pixels of 
the reference image and its neighbor image. By iteratively 
repeating these steps, winning pixels are obtained with the 
SOM and the matching between the pixels of the different 
image pairs is accomplished. 
 

IV. EXPERIMENTAL RESULTS 
 

In this section, we present some experimental results to 
show the performance of the proposed method. Experiments 
were performed using images captured with a Kinect 
camera designed by Microsoft; the experimental details and 

results of two test image sets are as follows: each image set 
contained 15 different images, and the performance of the 
proposed GPU-based method was compared with that of 
Lowe’s method and that of the SOM-based feature matching 
method [9]. For a comparative analysis of the execution 
performance, the algorithm was run on a CPU and a GPU 
independently. Experiments were conducted on an Intel 
Core i3 processor endowed with an NVIDIA GPU, GeForce 
310 with a global memory of 512 MB. The CUDA, proposed 
by NVIDIA for its graphics processors, exposes a 
programming model that integrates the host (CPU) and the 
GPU codes in the same code source files. The main pro-
gramming introduced by the programming model is an 
explicitly parallel function invocation (kernel), which is 
executed by a user-specified number of threads.  

 

 
Fig. 6. Test image set 1: feature matching between image 1 and image 
2 under varying conditions. (a) Matching between two images, (b) rotation 
of 30°, (c) scaling with a 0.5 scale factor, and (d) blurring. 
 

 
Fig. 7. Test image set 2: feature matching between image 8 and image 
9 under varying conditions. (a) Matching between two images, (b) rotation 
of 30°, (c) scaling with a 0.5 scale factor, and (d) blurring. 
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Table 1. Comparison results for test image set 1 with Lowe’s method, 
SOM-based feature matching method [9], and the proposed GPU-based 
method 

No. Set of images 
Lowe’s method SOM-based feature 

matching [9] 
(CPU) 

Proposed 
GPU-based 

method CPU GPU [10] 
1 Images 1 & 2 0.1285 0.0156 0.0141 0.0017 
2 Images 2 & 3 0.1345 0.0162 0.0156 0.0016 
3 Images 3 & 4 0.1058 0.0177 0.0141 0.0017 
4 Images 4 & 5 0.1456 0.0199 0.0167 0.0015 
5 Images 5 & 6 0.1206 0.0182 0.0134 0.0014 
6 Images 6 & 7 0.1612 0.0166 0.0141 0.0016 
7 Images 7 & 8 0.1598 0.0199 0.0161 0.0018 
8 Images 8 & 9 0.1701 0.0194 0.0145 0.0017 
9 Images 9 & 10 0.1234 0.0182 0.0121 0.0014 
10 Images 10 & 11 0.1314 0.0192 0.013 0.0015 
11 Images 11 & 12 0.1456 0.0181 0.0145 0.0017 
12 Images 12 & 13 0.1267 0.0133 0.0141 0.0017 
13 Images 13 & 14 0.1312 0.0131 0.0154 0.0016 
14 Images 14 & 15 0.1687 0.0155 0.0146 0.0016 

GPU: graphics processing unit, SOM: self-organizing map. 
 

Table 2. Comparison results for test image set 2 with Lowe’s method, 
SOM-based feature matching method [9], and the proposed GPU-based 
method 

No. Set of images 
Lowe’s method SOM-based feature 

matching [9] 
(CPU) 

Proposed 
GPU-based 

method CPU GPU [10] 
1 Images 1 & 2 0.1365 0.0152 0.017 0.0019 
2 Images 2 & 3 0.1412 0.0165 0.0162 0.0018 
3 Images 3 & 4 0.1484 0.018 0.0167 0.0018 
4 Images 4 & 5 0.1586 0.0183 0.0176 0.0019 
5 Images 5 & 6 0.1707 0.0169 0.0191 0.0021 
6 Images 6 & 7 0.1698 0.0191 0.0183 0.0021 
7 Images 7 & 8 0.1613 0.0201 0.0181 0.002 
8 Images 8 & 9 0.1688 0.0187 0.0187 0.0018 
9 Images 9 & 10 0.1568 0.0178 0.0151 0.0017 
10 Images 10 & 11 0.1514 0.0182 0.0176 0.0019 
11 Images 11 & 12 0.1595 0.0179 0.0169 0.0019 
12 Images 12 & 13 0.0968 0.0111 0.01112 0.0013 
13 Images 13 & 14 0.1062 0.0123 0.0133 0.0016 
14 Images 14 & 15 0.1077 0.0117 0.0134 0.0016 

GPU: graphics processing unit, SOM: self-organizing map. 

 

Every CUDA kernel is explicitly invoked by the host 
code and executed by the device, while the host side code 
continues the execution asynchronously after instantiating 
the kernel. The image size for the two test image sets is 480 
× 380 pixels. Experiments were conducted under varying 
situations, such as rotation, scaling, and blurring conditions. 
Figs. 6 and 7 show the matching results for two image sets 
obtained using Lowe’s method and with the SOM-based 
feature matching method [9]. The proposed method achieves 
the same matching results as those described in [9] with 
much less computation time. It is found that the average 
matching time is 0.13953 s for Lowe’s SIFT, while for the 
SOM-based feature matching method [9], it is 0.01447 
seconds, which is reduced to 0.00165 seconds by using the 
proposed GPU-based method. 

Using the SOM-based feature matching [9] method, we 
can accelerate Lowe’s algorithm by nine times on average, 
and yet another nine times by using the proposed GPU-
based method. Thus, the presented GPU-based method 

yields a performance improvement of approximately 90 
times. Tables 1 and 2 show the comparison results of the 
computation time on two image sets for different images, in 
the cases of the Lowe’s method, SOM-based feature 
matching method [9], and the proposed GPU-based method. 
Experimental results show that the SOM-based feature 
matching method [9] performs more efficient matching than 
Lowe’s SIFT. A significant reduction in the computation 
time is obtained by using the proposed GPU-based method. 

 

V. CONCLUSIONS 
 

This paper presents a matching method to obtain the 
features under varying conditions with reduced processing 
time. The computation time of the proposed method is 
reduced as compared to Lowe’s method and further optimized 
by using a GPU. Experiments on various test images have 
been carried out to evaluate how well the presented method 
performs on the matching problem as compared to Lowe’s 
method. Experimental results show that the proposed 
method produces better matching results with a significant 
reduction in computation times. 
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