• Title/Summary/Keyword: viscous effect

Search Result 530, Processing Time 0.047 seconds

Code Development for Analysis of 2D Viscous Flow with Free Surface (2차원 자유표면 점성 유동 계산 코드 개발에 관한 연구)

  • Huh J. S.;Sah J.-Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.162-167
    • /
    • 1998
  • A computer code has been developed for the analysis of 2D viscous flow with free surface. VOF method and higher order upwind scheme have been employed for the accurate prediction of free surface motion. Surface tension effect and axisymmetric flow can be computed by the present code.

  • PDF

Development of Viscous Cabin Mount for Excavator (액체봉입형 Viscous 굴삭기 Cabin Mount 개발)

  • 김원영;전범석;박외경;강하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • Samsung Ltd. has developed a new-type cab mount for specific use on construct ion machinery subjected to strong vibration and multi-directional impact force. These all make it possible to achieve an excellent damping effect over a wide frequency range against large amplitude vibration as well as excellent insulation against small-amplitude vibration. This new mount make lower vibration and noise levels while increasing riding comfort at the same time. Characteristics of Cab mount were optimized through computer simulation, advanced bench testing, ODS testing, and a real equipment offroad testing.

  • PDF

Vibration Control of Structure Using the Toggle System (Toggle 시스템을 이용한 구조물의 진동제어)

  • 황재승;송진규;강경수;윤태호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.491-498
    • /
    • 2003
  • The purpose of this study is to analyze the geometric nonlinearity of a toggle system and to evaluate the vibration control performance when the toggle system with a viscous damper was applied to a structure. Numerical analysis shows that the relative displacement of the structure can be amplified by amplification mechanism of the toggle system and the capacity of the damper can be reduced without the loss of vibration control performance. It is also observed that the geometric nolinearity of toggle system using the linear viscous damper has little effect on the performance.

  • PDF

UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN THE PRESENCE OF UNIFORM SUCTION AND INJECTION

  • Attia Hazem A.
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1 s.31
    • /
    • pp.1-10
    • /
    • 2006
  • The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel non-conducting porous plates is studied with heat transfer. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates while the fluid motion is subjected to a constant pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the magnetic field and the uniform suction and injection on both the velocity and temperature distributions is examined.

  • PDF

Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade (터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1915-1927
    • /
    • 1992
  • A three-dimensional Navier-Stokes code has been developed for analysis of viscous flows through turbomachinery blade rows or other internal passages. The Navier-Stokes equations are written in a cartesian coordinate system, then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected and turbulent effects are modeled using the baldwin-Lomax model. Equations are discretized using finite difference method on the stacked C-type grids and solved using LU-ADI decomposition scheme. calculations are made for a two-dimensional cascade in a transonic wind-tunnel to see the infuence of the endwalls. The flow pattern of the three-dimensional flow near the endwall is found to be different from that of the two-dimensional flow due to the existence of the endwalls.

Effect of Mesh Size on the Viscous Flow Parameters of an Axisymmetric Nozzle

  • Haoui, Rabah
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2011
  • The viscous flow in an axisymmetric nozzle was analyzed while accounting for the mesh sizes in both in the free stream and the boundary layer. The Navier-Stokes equations were resolved using the finite volume method in order to determine the supersonic flow parameters at the exit of the converging-diverging nozzle. The numerical technique in the aforementioned method uses the flux vector splitting of Van Leer. An adequate time stepping parameter, along with the Courant, Friedrich, Lewis coefficient and mesh size level, was selected to ensure numerical convergence. The boundary layer thickness significantly affected the viscous flow parameters at the exit of the nozzle. The best solution was obtained using a very fine grid, especially near the wall at which a strong variation of velocity, temperature and shear stress was observed. This study confirmed that the boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value. The nozzles are used at the exit of the shock tube in order to obtain supersonic flows for various tests. They also used in propulsion to obtain the thrust necessary to the displacement of the vehicles.

A displacement-based seismic design procedure for buildings with fluid viscous dampers

  • Banuelos-Garcia, Francisco H.;Ayala, Gustavo;Lopez, Saul
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.609-623
    • /
    • 2020
  • This paper presents a displacement-based seismic design procedure for new structures with fluid viscous dampers and/or for existing structures, where these devices are required as a retrofit measure and damage control. To consider the non-proportional damping produced by these devices in a conventional modal spectral analysis, the effect of the fluid viscous dampers is approximated as the sum of a proportional damping matrix and a complementary matrix which is representative of non-proportional damping matrix. To illustrate the application of this procedure and evaluate the performance of structures designed with the procedure proposed, five regular plane frames: 8, 12, 17, 20 and 25-storey, and an 8-storey building are designed. The seismic demands used for design and validation were the records obtained at the SCT site during the 1985 Michoacan earthquake, and that of the 2017 Morelos - Puebla earthquake obtained at the Culhuacan site, both stations located on soft soil sites. To validate the procedure proposed, the performances and damage distributions used as design targets were compared with the corresponding results from the nonlinear step-by-step analyses of the designed structures subjected to the same seismic demands.

A time-domain simulation of an oscillating water column with irregular waves

  • Koo, Weoncheol;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.147-158
    • /
    • 2012
  • A time-domain simulation of a land-based Oscillating Water Column (OWC) with various irregular waves as a form of PM spectrum is performed by using a two-dimensional fully nonlinear numerical wave tank (NWT) based on the potential theory, mixed Eulerian-Lagrangian (MEL) approach, and boundary element method. The nonlinear free-surface condition inside the OWC chamber was specially devised to describe both the pneumatic effect of the time-varying pressure and the viscous energy loss due to water column motions. The quadratic models for pneumatic pressure and viscous loss are applied to the air and free surface inside the chamber, and their numerical results are compared with those with equivalent linear ones. Various wave spectra are applied to the OWC system to predict the efficiency of wave-energy take-off for various wave conditions. The cases of regular and irregular waves are also compared.

Numerical Analysis on the Flow and Heat Transfer Characteristic of Wood-flour-filled Polypropylene Melt in an Extrusion Die (목분 충진 고분자 용융체의 압출다이 내 유동 및 열전달에 관한 수치해석)

  • Ko, Seung-Hwan;Park, Hyung-Gyu;Song, Myung-Ho;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.311-318
    • /
    • 2001
  • A three-dimensional numerical analysis of the flow and heat transfer characteristic of wood-flour-filled polypropylene melt in an extrusion die was carried out Used for this analysis were Finite Concept Method based on FVM, unstructured grid and non-Newtonian fluid viscosity model. Temperature and flow fields are closely coupled through temperature dependent viscosity and viscous dissipation. With large Peclet, Nahme, Brinkman numbers, viscous heating caused high temperature belt near die housing, Changing taper plate thickness and examining some predefined parameters at die exit investigated the effect of taper plate on velocity and temperature uniformities. In the presence of taper plate, uniformity at die exit could be improved and there existed an optimum thickness to maximize it.

  • PDF

Micro/Nano Rheological Characteristics of PMMA in Hot Embossing Process (핫엠보싱 공정에서 PMMA의 마이크로/나노 레올로지 특성)

  • Kim B. H.;Kim K. S.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.259-264
    • /
    • 2004
  • The hot embossing process as a method for the fabrication of polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of polymer film during hot embossing process. As the initial step of quantitating the hot embossing process, simple parametric studies for the embossing conditions have been carried out using high resolution masters which patterned by DRIE process. Under different embossing times and pressures, the viscous flow of PMMA films into micro/nano cavities has been investigated. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM analysis considering micro/nano effect, such as surface tension and contact angle.

  • PDF