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UNSTEADY HARTMANN FLOW WITH HEAT TRANSFER IN
THE PRESENCE OF UNIFORM SUCTION AND INJECTION

HAZEM A. ATTIA

ABSTRACT. The unsteady Hartmann flow of an electrically conducting, viscous,
incompressible fluid bounded by two parallel non-conducting porous plates is studied
with heat transfer. An external uniform magnetic field and a uniform suction and
injection are applied perpendicular to the plates while the fluid motion is subjected
to a constant pressure gradient. The two plates are kept at different but constant
temperatures while the Joule and viscous dissipations are included in the energy
equation. The effect of the magnetic field and the uniform suction and injection on
both the velocity and temperature distributions is examined.

1. INTRODUCTION

Magnetohydrodynamic flow between two parallel plates, known as Hartmann
flow. is a classical problem that has many applications in magnetohydrodynamic
(MHD) power generators, MHD pumps, accelerators, aerodynamic heating, elec-
trostatic precipitation, polymer technology, the petroleum industry, purification of
crude oil and fluid droplets and sprays. Hartmann and Lazarus [1] studied the
influence of a transverse uniform magnetic field on the flow of a conducting fluid
between two infinite parallel, stationary, and insulated plates. Since then, consider-
able research has been done that examined the effect of various physical processes
on Hartmann flow [2-12].

In the present study, we study the unsteady flow and heat transfer of an incom-
pressible, viscous, electrically conducting fluid between two infinite non-conducting
horizontal porous plates. The fluid is acted upon by a constant pressure gradient,
a uniform suction and injection and a uniform magnetic field perpendicular to the
plates. The induced magnetic field is neglected by assuming a very small magnetic
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Fig. 1. The geometry of the problem.

Reynolds number [4, 5]. The two plates are maintained at two different but constant
temperatures. This configuration approximates well several practical situations such
as heat exchangers, flow meters, and pipes that connect system components. The
cooling of these devices can be achieved by utilizing a porous surface through which
a coolant, either a liquid or gas, is forced. Therefore, the results obtained here are
important for the design of the wall and the cooling arrangements of these devices.
The equations of motion are solved analytically using Laplace transforms method
while the energy equation is solved numerically and includes the Joule and the vis-
cous dissipations. The effects of the magnetic field and the suction and injection
on both the velocity and temperature distributions are studied. In the following
section, a detailed description is given to the problem and the governing equations
for the velocity and temperature fields are derived. Then, the analytical solution
for the velocity problem and the numerical solution for the temperature problem
arc obtained. Discussion for some selected results for the velocity and temperature

distributions is given.
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2. DESCRIPTION OF THE PROBLEM

The two non-conducting plates of infinite extent are located at the y = h planes,
as shown in Fig. 1. The lower and upper plates are kept at the two constant tem-
peratures Ty and T, respectively, where T > Ty. The fluid flows between the two
plates under the influence of a constant pressure gradient dP/dz in the z-direction,
and a uniform suction from above and injection from below starting at t = 0. The
whole systein is subjected to a uniform magnetic field B, in the positive y-direction.
This is the total magnetic field acting on the fluid since the induced magnetic field is
neglected. From the geometry of the problem, it is evident that 0/0x = 8/9z = 0 for
all quantitics apart from the pressure gradient dP/dz, which is assumed constant.
The velocity vector of the fluid is Fig. 1 with the initial and boundary conditions
u(y.0) = 0, and u(h,t) = 0 for t > 0. The temperature T'(y,t) at any point in the
fluid satisfies both the initial and boundary conditions T'(y,0) = Ty, T'(+h,t) = T
and T(—h,t) = Ty for t > 0. The fluid flow is governed by the momentum equation

2
pg—?—kpvog—;i = ——L:—lg—l—ug—;;—aBgu (1)
where p, 1 and o are the constant density, the constant coefficient of viscosity and
the constant electrical conductivity of the fluid, respectively. To find the temperature
distribution inside the fluid we use the energy equation [13]
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where ¢ and k are the specific heat capacity and the thermal conductivity of the
fluid, respectively. The second and third terms on the right side represent the
viscous and’ Joule dissipations, respectively. The problem is simplified by writing
the equations in non-dimensional form. The characteristic length is taken to be h,
and the characteristic time is ph?/u? while the characteristic velocity is u/ph. We
define the following non-dimensional quantities:
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is the Eckert number, Ha? = — where Ha is the Hartmann number,
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In terms of these non-dimensional variables and parameters, the basic Eqgs. (1)-

(2) are written as (the “hats” will be dropped for convenience)
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The initial and boundary conditions for the velocity become
u(y,0) =0, u(£1,t) =0, (5)
and the initial and boundary conditions for the temperature are given by

T(y,0) =0. T(+1,t) =1, T(-1,t) = 0. (6)
3. ANALYTICAL SOLUTION OF THE EQUATIONS OF MOTION

Equation (3) is a linear nonhomogeneous partial differential equation which can
be solved analytically using Laplace transforms (LT) subject to the initial and
boundary conditions given by Eq. (5). This solution gives the velocity field as
functions of space and time. Taking the LT of Eq. (3), we find

dU(y,s)  dU(y.s)
- S
dy? dy
where U (y, s) = L(u(y,t)), C is the constant value of —dP/dz, and K(s) = Ha%+s.
The solution of Eq. (7) with y as an independent variable is
éinh(S/2) sinh(ay)  cosh(5/2) cosh(ay)
sinh(a) coshi(a)

KW s) =~ ™

Uly,s) = K% (1 + exp(Sy/2) [

where o = §2/4+ K. Using the complex inversion formula and the residue theorem
(14], the inverse transform of U(y, s) is determined as

Ul(y,t)
- %(1 + exp(Sy/2)[

sinh(S/2) sinh(eny)  cosh(S/2) cosh(aly)])

sinh(a) cosh(ay)
: > n exp(Dn;t) . .
+27C exp(Sy/2) Z(—l) [(n -1) Dny + Ha®) Dy sinh(S/2) sin(m(n — 1)y)
n=1
exp(Dngt)

+(n — 0.5) cosh(S/2) cos(m(n — O.S)y)} (8)

(Dng + Ha?)Dn,
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where,
Dny = —[x*(n - 1)+ 8?/4 + Ha?),
Dng = —[r*(n - 0.5)2 + S%/4 + Ha?). oy = §%/4+ Ha®.
The location and nature of the poles are listed as follows:
(a) Simple poleat s =0, s = ~52/4— Ha®? —7n%n?, s = —S%/4— Ha® —7%(2n—
1)%/4,
(b) Removal singularity at s = —Ha?.
Equation (8) shows that u is directly proportional to the pressure gradient, that is

u/C is independent of C. The expression for the velocity u is to be evaluated for
different values of the parameters Ha and S.

4. NUMERICAL SOLUTION OF THE ENERGY EQUATION

The exact solution of the equation of motion, given by Eq. (8), determines the
velocity field for different values of the parameters Ha and S. The values of the
velocity components, when substituted in the right side of the inhomogeneous energy
equation (4), make it too difficult to solve analytically. The energy equation is to be
solved numerically with the initial and boundary conditions given by Eq. (6) using
finite differences [15]. The Crank-Nicolson implicit method is applied. The finite
difference equations are written at the mid-point of the computational cell and the
different terms are replaced by their second-order central difference approximations
in the y-direction. The diffusion term is replaced by the average of the central
differences at two successive time levels. The viscous and Joule dissipation terms
are evaluated using the velocity components and their derivatives in the y-direction
which are obtained from the exact solution. Finally, the block tri-diagonal system
is solved using Thomas’ algorithm.

The computational domain is divided into meshes each of dimension At and Ay
in time and space, respectively. We define the variables v = 6u/dy and H = 0T /0y
to reduce the second order differential Eq. (4) to first order differential equation
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which has the following finite difference representation:
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Unlike the velocity u, the temperature distribution depends on C. All calculations
have been carried out for C =5, Pr =1 and Fc = 0.2.

+E0Ha2(

5. RESULTS AND DISCUSSION

Figure 2 presents the velocity and temperature distributions as functions of y
for different values of the time starting from ¢t = 0 to the steady state. Figures 2a
and 2b are evaluated for Ha = 1 and S = 1. The velocity curves are asymmetric
about the y = 0 plane because of the suction as shown in Fig. 2a. It is observed that
the velocity component u reaches the steady state faster than T'. This is expected,
because u acts as the source of temperature.

Figure 3 shows the effect of the Hartmann number Ha on the time development
of the velocity u and temperature T' at the center of the channel (y = 0). In this
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Fig. 2. Temporal evolution of the profile of (a) u and (b) T when Ha = 1 and
S=1

figure, S = 0 (suction suppressed). It is clear from Fig. 3a that increasing the
parameter Ha decreases u(0,t) and its steady state time. This is due to increasing
the magnetic damping force on u. Figure 3b indicates that increasing Ha, increases
also T'(0,t) at small times but decreases it at larger times. This is due to the fact
that, for small times, u is small and an increase in Ha increases the Joule dissipation
which is proportional to Ha. Therefore, the temperature increases. For larger times,
increasing Ha decreases ¥ and, in turn, decreases the Joule and viscous dissipations
which, in turn, decreases T. This accounts for the crossing of the T curves with
time for various values of Ha.

Figure 4 shows the effect of the suction parameter on the time development of
the velocity u and temperature T at the centre of the channel (y = 0). In this figure,
Ha = 0 (hydrodynamic case). In Fig. 4a, it is observed that increasing the suction
decreases the velocity u at the center and its steady state time due to the convection
of fluid from regions in the lower half to the center, which has higher fluid speed.
In Fig. 4b, the temperature at the center is affected more by the convection term,
which pumps the fluid from the cold lower half towards the centre.
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Fig. 3. Effect of Ha on the time variation of: (a) u at y =0; (b) T at y = 0.
(5=0)

6. CONCLUSION

The unsteady Hartmann flow of a.conducting fluid under the influence of an
applied uniform magnetic field has been studied in the presence of uniform suction
and injection. The effect of the magnetic field and the suction and injection velocity

on the velocity and temperature distributions has been investigated. It is found that
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Fig. 4. Effect of S on the time variation of: (a) u at y =0; (b) T at y = 0.
(Ha = 0)

both the magnetic field and suction or injection velocity has a marked effect on both
the velocity and temperature distributions. It is of interest to see that the effect of
the magnetic field on the temperature at the center of the channel depends on time.
For small time, increasing the magnetic field increases the temperature, however,
for large time, increasing the magnetic field decreases the temperature.
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