• Title/Summary/Keyword: viscous boundary

Search Result 303, Processing Time 0.026 seconds

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades (회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析))

  • Keon-Je,Oh;Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating

  • Afridi, Muhammad Idrees;Qasim, Muhammad;Khan, Ilyas
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1303-1309
    • /
    • 2018
  • In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.

DEVELOPMENT OF AN UNSTRUCTURED OVERSET MESH METHOD FOR 2-D UNSTEADY VISCOUS FLOW SIMULATION WITH RELATIVE MOTION (상대운동이 있는 이차원 비정상 점성 유동 해석을 위한 비정렬 중첩격자기법 개발)

  • Jung Mun-Seung;Kwon Oh-Joon
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.1-7
    • /
    • 2006
  • An unstructured overset mesh method has been developed for the simulation of unsteady viscous flow fields around multiple bodies in relative motion. For this purpose, a robust and fast search technique is proposed for both triangle and high-aspect ratio quadrilateral cell elements. The interpolation boundary is defined for data communication between grid systems and an interpolation method is suggested for viscous and inviscid cell elements. This method has been applied to calculate the flow fields around 2-D airfoils involving relative motion. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Analysis of Viscous Free Surface Flow around a Ship by a Level-set Method

  • Park, Il-Ryong;Chun, Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.37-50
    • /
    • 2002
  • In the present numerical simulation of viscous free surface flow around a ship, two-fluids in-compressible Reynolds-averaged Navier-Stokes equations with the standard $\textsc{k}-\varepsilon$turbulence model are discretized on a regular grid by using a finite volume method. A local level-set method is introduced for capturing the free surface movement and the influence of the viscous layer and dynamic boundary condition of the free surface are implicitly considered. Partial differential equations in the level-set method are discretized with second order ENO scheme and explicit Euler scheme in the space and time integration, respectively. The computational results for the Series-60 model with $C_B=0.6$ show a good agreement with the experimental data, but more validation studies for commercial complicated hull forms are necessary.

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

ENERGY DECAY RATE FOR THE KIRCHHOFF TYPE WAVE EQUATION WITH ACOUSTIC BOUNDARY

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kirchho type wave equation with acoustic boundary in a bounded domain in $R^n$. To stabilize the system, we incorporate separately, the passive viscous damping in the model as like Gannesh C. Gorain [1]. Energy decay rate is obtained by the exponential stability of solutions by using multiplier technique.

ENERGY DECAY RATES FOR THE KIRCHHOFF TYPE WAVE EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY

  • Kang, Yong Han
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.249-258
    • /
    • 2014
  • In this paper, we study uniform exponential stabilization of the vibrations of the Kirchhoff type wave equation with Balakrishnan-Taylor damping and acoustic boundary in a bounded domain in $R^n$. To stabilize the systems, we incorporate separately, the passive viscous damping in the model as like Kang[14]. Energy decay rates are obtained by the uniform exponential stability of solutions by using multiplier technique.