Browse > Article
http://dx.doi.org/10.3938/jkps.73.1303

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating  

Afridi, Muhammad Idrees (Department of Mathematics, COMSATS University)
Qasim, Muhammad (Department of Mathematics, COMSATS University)
Khan, Ilyas (Basic Engineering Sciences Department, College of Engineering Majmaah University)
Abstract
In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.
Keywords
Entropy generation; Slendering stretching sheet; Frictional and Joule heating; Runge-Kutta Fehlberg scheme; Bejan number;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. D. Makinde, A. S, Eegunjobi and M. S. Tshehla, Entropy 17, 7811 (2015).   DOI
2 A. S. Butt and A. Ali, Eur. Phys. J. Plus. 128, 1 (2013).   DOI
3 L. J. Crane, ZAMP 21, 645 (1970).
4 T. Fang and J. Zhang. Commun. Nonlinear Sci. Numer. Simulat. 14, 2853 (2009).   DOI
5 M. Z. Salleh, R. Nazar and I. Pop, J. Taiwan Inst. Chem. Eng. 41, 651 (2010).   DOI
6 S. Yao, T. Fang and Y. Zhong, Commun. Nonlinear Sci. Numer. Simulat. 16, 752 (2011).   DOI
7 M. I. Khan, T. Hayat, M. I. Khan and A. Alsaedi, Int. J. Heat and Mass Trans. 113, 310 (2017).   DOI
8 Y. I. Seini and O. D. Makinde, Math. Prob. Eng. 2013, 1 (2013).
9 E. M. A. Elbashbeshy, Arch. Mech. 53, 643 (2001).
10 K. Bhattacharyya and K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 17, 2728 (2012).   DOI
11 B. Shen, L. Zheng and S. Chen, AIP Advances. 5, 107133 (2015).   DOI
12 S. Mukhopadhyay and K. Bhattacharyya, J. Egypt. Math. Soc. 20, 229 (2012).   DOI
13 D. Pal and P. Saha, Int. J. Mech. Sci. 119, 208 (2016).   DOI
14 L. C. Zheng, X. Jin, X. X. Zhang and J. H. Zhang, Acta Mech. Sin. 29, 667 (2013).   DOI
15 M. I. Khan, S. Ullah, T. Hayat, M. I. Khan and A. Alsaedi, J. Mol. Liq. 260, 279 (2018).   DOI
16 M. M. Rashidi, M. Ali, N. Freidoonimehr and F. Nazari, Energy 55, 497 (2013).   DOI
17 W. A. Khan, R. Culham and A. Aziz, ASME J. Heat Trans. 137, 1 (2015).
18 A. Aziz, Entropy 8, 50 (2006).   DOI
19 M. I. Afridi and M. Qasim, In. J. App. Comput. Math. 16, 1 (2018).
20 M. I Afridi, M. Qasim and S. Saleem, J. Nanofluids 7, 1 (2018).   DOI
21 M. I. Afridi and M. Qasim, J. Nanofluids 7, 783 (2017).
22 M. M. Khader and A. M. Megahed, App. App. Math. 2, 817 (2015).
23 M. M. Khader and A. M. Megahed, J. App. Mech. Tech. Phys. 56, 241 (2015).   DOI
24 M. I. Afridi, M. Qasim and S. Shafie, Eur. Phys. J. Plus. 132, 2 (2017).   DOI
25 K. Vajravelu, App. Math. Comp. 124, 281 (2001).   DOI
26 M. Farooq, M. I. Khan, M. Waqas, T. Hayat, A. Alsaedi and M. I. Khan, J. Mol. Liq. 221, 1097 (2016).   DOI
27 M. I. Khan, M. Waqas, T. Hayat, M. I. Khan and A. Alsaedi, Int. J. Mech. Sci. 131, 426 (2017).
28 T. Hayat, M. I. Khan, M. Waqas, A. Alsaedi and M. I. Khan, J. Mol. Liq. 223, 960 (2016).   DOI
29 A. Ishak, R. Nazar and I. Pop, Heat. Mass. Trans. 44, 921 (2008).   DOI
30 K. L. Hsiao, Energy 59, 494 (2013).   DOI
31 M. M. Khader and A. M. Megahed, Eur. Phys. J. Plus. 128, 1 (2013).   DOI
32 C. Y. Wang, Acta Mech. 72, 261 (1988).   DOI
33 T. Fang, J. Zhang and Y. Zhong, Appl. Math. Comput. 218, 7241 (2012).
34 L. Lee, Phys. Fluids 10, 822 (1967).
35 S. P. A. Devi and M. Prakash, J. Soc. Ind. Appl. Math. 18, 245 (2014).
36 S. P. A. Devi and M. Prakash, J. Braz. Soc. Mech. Eng. 38, 423 (2015).
37 S. P. A. Devi and M. Prakash, J. Nigerian. Math. Soc. 34, 318 (2015).   DOI
38 A. Bejan, Entropy generation through heat and fluid flow (Wiley, New York, 1982).
39 O. D. Makinde, Mech. Research Commu. 33, 692 (2006).   DOI
40 M. M. Rashidi, F. Mohammadi, S. Abbasbandy and M. S. Alhuthali, J. App. Fluid Mech. 8, 753 (2015).   DOI
41 I. Ullah, S. Shae and I. Khan, J. King Saud Uni. Sci. 29, 250 (2017).   DOI