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ENERGY DECAY RATES FOR THE KIRCHHOFF TYPE

WAVE EQUATION WITH BALAKRISHNAN-TAYLOR

DAMPING AND ACOUSTIC BOUNDARY

Yong Han Kang

Abstract. In this paper, we study uniform exponential stabilization of

the vibrations of the Kirchhoff type wave equation with Balakrishnan-
Taylor damping and acoustic boundary in a bounded domain in Rn.

To stabilize the systems, we incorporate separately, the passive viscous

damping in the model as like Kang[14]. Energy decay rates are obtained
by the uniform exponential stability of solutions by using multiplier tech-

nique.

1. Introduction

In this paper, we consider the uniform stability of mathematical problems
governed by the following a nonlinear wave equations of the Kirchhoff type wave
equation with Balakrishnan-Taylor damping and acoustic boundary conditions:

|u′|ρu′′ + 2δu′ = (a2 + b
∫

Ω
|∇u|2dx+ σ

∫
Ω
∇u · ∇u′dx)4u in Ω×R+, (1)

u = 0 on Γ0 ×R+ , (2)

(a2 + b
∫

Ω
|∇u|2dx+ σ

∫
Ω
∇u · ∇u′dx)∂u∂ν = y′ on Γ1 ×R+, (3)

u′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+, (4)

u(0) = u0, u
′(0) = u1 in Ω (5)

where Ω is a bounded, connected set in Rn(n ≥ 1) having a smooth boundary
Γ = ∂Ω, consisting of two parts Γ0 and Γ1 such that Γ0 ∪ Γ1 = Γ. Primes
denote the time derivaites, ∆ the laplacian in Rn taken in space variables, ν
the unit normal of Γ pointing towards exterior of Ω and R+ := (0,∞). The
parameters δ > 0 is a small passive viscous damping coefficient, and a > 0, b >
0, σ > 0, ρ > 0 are constant real numbers. p and q are functions satisfying some
conditions to be specified later. Physically, the integro-differential equations
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(1)-(5) occurs in the study of vibrations of damped flexible space structures in

bounded domain in Rn. The nonlinear term |u′|ρu′′
, ρ > 0 is modeled materials

whose density depends on the velocity u′. The term 2δu′ is the distributed
damping of passive viscous type. The boundary conditions considered here
are of mixed Dirichlet and Neumann type and acoustic boundary. And also
The model in hand, with Balakrishnan-Taylor damping(σ > 0) and ρ = 1, was
initially proposed by Balakrishnan and Taylor in 1989 [16] and Bass and Zes
[17]. On the other hand, for the conditions ρ = 1, σ = 0, Kang was worked
in 2012 [14]. The analytical studies in the area of stabilization of distributed
parameter system is currently of interest in view of application to vibration
control of various structural elements. The phenomenon was first observed by
Hunton as reported by Harrison [7]. The nonlinear model like (1) for transverse
vibrations was originally derived by Kirchhoff [3]. Beale and Rosencrans[5]
introduced acoustic boundary conditions of the general form

∂u

∂ν
= y′ on Γ1 ×R+

γu′ +m(x)y′′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

Recently, wave equations with acoustic boundary conditions have been treated
by many authors [4],[5],[6],[8],[9],[10],[11],[12],[13]. In [4], the authors studied
the nonlinear wave equations

u′′ −M(

∫
Ω

|u|2dx)∆u+ |u′|αu′ = 0 in Ω×R+,

u = 0 on Γ0 ×R+,

∂u

∂ν
= y′ on Γ1 ×R+,

γu′ +m(x)y′′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

They proved the existence of solutions, but gave no decay rate for solutions. As
regards uniform decay rates for solutions to problems with acoustic boundary
conditions, there are not much literature [2],[4],[9],[10],[11]. Frota and Larkin[9]
established global solvability and decay estimates for a linear wave equation
with boundary conditions

∂u

∂ν
= h(x)y′ on Γ1 ×R+

γu′ + p(x)y′ + q(x)y = 0 on Γ1 ×R+.

In this paper we are motivated by boundary conditions of Park[4] and results of
Gorain[1], Kang[14] and Zarai and Tatar[15]. The aim of this paper is to study
uniform stabilization of the generalized nonlinear Kirchhoff type wave equations
governed by (1)-(5) with the mixed boundary conditions. To our knowledge,
this problem has not been considered by predecessors and is studied first, as a
Kirchhoff model, in this paper. The plan of this paper as follows. In section 2,
we give some notation, some conditions and material needed for our work. In



ENERGY DECAY RATES 251

section 3, we drive the uniform stability on account of viscous damping with
acoustic boundary. The notation used in this paper is standard and can be
found in Gorain[1].

2. Preliminaries and some notations

In this section, we present some notations and some material in the proof
of our result. Throughout this paper, we use the notation V = {u ∈ H1(Ω) :
u = 0 on Γ0} the subspace of the classical Sobolev space H1(Ω) of real valued
functions of order one. Let k be the smallest positive constant independent of
t (depends only on Ω) satisfying the Poincare inequality∫

Ω

u2dx ≤ k
∫

Ω

|∇u|2dx for every u ∈ V . (6)

And also let k be the smallest positive constant independent of t (depends only
on Γ1) satisfying the embeding inequality∫

Γ1

u2dx ≤ k
∫

Ω

|∇u|2dx for every u ∈ V . (7)

We assume that

ρ satisfies 0 < ρ ≤ n
n−2 , if n ≥ 3 or ρ > 0, if n = 1, 2. (8)

and since V ↪→ Lρ+2(Ω),

there exist a positive constant K such that ||u||ρ+2 ≤ K||∇u||2. (9)

For the functions p and q, we assume that p, q ∈ C(Γ1) and p(x) > 0 and
q(x) > 0 for all x ∈ Γ1. This assumption implies that there exist positive
constants pi, qi(i = 0, 1) such that

p0 ≤ p(x) ≤ p1, q0 ≤ q(x) ≤ q1 for all x ∈ Γ1. (10)

By using Gälerkin’s approximation, we can obtain the following existence result
for the solution subject to (1)-(5) under the conditions on p and q as above.
For the initial data (u0, u1) ∈ (V ∩H2(Ω)) × V , there exists a unique pair of
functions (u, y), which is a solution to the problem (1)-(5) in the class

u ∈ L∞(0, T ;V ×H2(Ω)), u′ ∈ L∞(0, T ;V ),

u′′ ∈ L∞(0, T ;L2(Ω)), y, y′ ∈ L2(0,∞;L2(Γ1)).

In the order to state our main results, we define the energy of problem (1)-(5)
by

E(t) =
1

ρ+ 2

∫
Ω

|u′|ρ+2dx+
a2

2

∫
Ω

|∇u|2dx (11)

+
b

4
(

∫
Ω

|∇u|2dx)2 +
1

2

∫
Γ1

q(x)(y)2dΓ.
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3. Stability on account of passive viscous damping

If we differentiate (11) with respect to t and use the governing Eq.(1) we
obtain

E′(t) =

∫
Ω

|u′|ρu′′u′dx+ a2

∫
Ω

∇u · ∇u′dx

+b(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

q(x)yy′dΓ

=

∫
Ω

{−2δu′ + (a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

∇u · ∇u′dx)4u}u′dx

+a2

∫
Ω

∇u · ∇u′dx+ b(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

q(x)yy′dΓ.

Application of Green’s formula, using the boundary conditions (2)-(5) and
then a simplification, we get

E′(t) = −2δ

∫
Ω

|u′|2dx− σ(

∫
Ω

∇u · ∇u′dx)2 +

∫
Γ1

(u′ + q(x)y)y′dΓ

= −2δ

∫
Ω

|u′|2dx− σ(

∫
Ω

∇u · ∇u′dx)2 (12)

−
∫

Γ1

p(x)(y′)2dΓ < 0 ∀t ∈ R+.

We see from (12) that the energy E is a decreasing function of time and
hence

E(t) ≤ E(0) ∀t ≥ 0, (13)

where

E(0) =
1

ρ+ 2

∫
Ω

|u1|ρ+2dx+
a2

2

∫
Ω

|∇u0|2dx+
b

4
(

∫
Ω

|∇u0|2dx)2

+
1

2

∫
Γ1

q(x)(y(x, 0))2dΓ.

Under what conditions does this energy E decay with time uniformly? An
affirmative answer is contained in the following theorem.

Theorem 3.1. If u = u(x, t) is a regular solution of the system (1)-(5) with
initial values (u0, u1) ∈ V × L2(Ω), then the energy E(t) of the system defined
by (11) satisfies

E(t) < Me−µtE(0), t ∈ (0,∞)

for some real constants M > 1(40) and µ > 0(37) and depend on ε(35).

Firstly, we prove the following lemma.
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Lemma 3.2. For every solution u = u(x, t) of the system (1)-(5), the time
derivative of the functional G defined by

G(t) =
1

ρ+ 1

∫
Ω

|u′|ρu′udx+

∫
Ω

δu2dx+
σ

4

∫
Γ1

uydΓ +
1

2

∫
Γ1

p(x)y2dΓ (14)

satisfies

G′(t) ≤ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ (15)

−a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · u′dx)|2, t ∈ R+.

Proof. If we differentiate (14) with respect to t and replace u′′ by the
relation (1), then we get

G′(t) =

∫
Ω

|u′|ρu′′udx+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2δ

∫
Ω

u′udx

+σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

(u′y + uy′)dΓ +

∫
Γ1

p(x)yy′dΓ

=

∫
Ω

(|u′|ρu′′ + 2δu′)udx+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx (16)

+σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

(u′y + uy′)dΓ +

∫
Γ1

p(x)yy′dΓ

=

∫
Ω

{(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

|∇u|2dx)4u}udx+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx

+σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx+

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ.

Applying Green’s formula and boundary conditions, we have

G′(t) =

∫
Γ1

(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

|∇u|2dx)
∂u

∂ν
udΓ

−
∫

Ω

(a2 + b

∫
Ω

|∇u|2dx+ σ

∫
Ω

|∇u|2dx)∇u · ∇udx

+
1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ σ(

∫
Ω

|∇u|2dx)

∫
Ω

∇u · ∇u′dx (17)

+

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ.
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Using the boundary condition(5) and Young’s inequality, relation (17) can
be written as

G′(t) =
1

ρ+ 1

∫
Ω

|u′|ρ+2dx− a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2

−σ(

∫
Ω

|∇u|2dx)2 + σ(

∫
Ω

|∇u|2dx)(

∫
Ω

∇u · ∇u′dx)

+2

∫
Γ1

uy′dΓ +

∫
Γ1

y(u′ + p(x)y′)dΓ.

≤ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ (18)

−a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · ∇u′dx)2, ∀t ∈ R+.

Hence the proof of lemma complete. �
Proof of Theorem 1. We introduce an energy like Lyapunov functional

V by

V (t) = E(t) + εG(t) for t ≥ 0. (19)

Now, using the Cauchy-Schwarz’s inequality, the Hölder inequality, the Poincare
inequality (6)-(9) and the defined of energy (11), we obtain estimate as follow

| 1

ρ+ 1

∫
Ω

|u′|ρu′udx| ≤ 1

ρ+ 1

∫
Ω

|u′|ρ+1|u|dx

≤ 1

ρ+ 1
(

∫
Ω

|u′|ρ+2dx)
ρ+1
ρ+2 (

∫
Ω

|u|ρ+2dx)
1
ρ+2

≤ 1

ρ+ 2

∫
Ω

|u′|ρ+2dx+
1

(ρ+ 1)(ρ+ 2)

∫
Ω

|u|ρ+2dx

≤ 1

ρ+ 2
||u′||ρ+2

ρ+2 +
k̃ρ+2

(ρ+ 1)(ρ+ 2)
||∇u||ρ+2

≤ 1

ρ+ 2
||u′||ρ+2

ρ+2 +
k̃ρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)
ρ
2 ||∇u||2

≤ {1 +
k̃ρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)
ρ
2

2

a2
}E(t), (20)

0 ≤ δ
∫

Ω

u2dx ≤ δk
∫

Ω

|∇u|2dx =
2δk

a2

a2

2

∫
Ω

|∇u|2dx ≤ 2δk

a2
E(t), (21)

|
∫

Γ1

uydΓ| ≤
∫

Γ1

1

2q(x)
u2dΓ +

1

2

∫
Γ1

q(x)y2dΓ (22)

≤ k̄

2q0

∫
Ω

|∇u|2dx+
1

2

∫
Γ1

q(x)y2dΓ ≤ (
k̄

a2q0
+ 1)E(t),
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1

2

∫
Γ1

p(x)y2dΓ ≤ p1

2q0

∫
Γ1

q(x)y2dΓ ≤ p1

q0
E(t), (23)

and

σ

4
(

∫
Ω

|∇u|2dx)2dx ≤ σ

b
E(t). (24)

Thus the inequality (20)-(24) and (14) yield for G that estimates

−[2 + 2Kρ+2

a2(ρ+1)(ρ+2) ( 2E(0)
a2 )ρ/2 + k̄

a2q0
]E(t) ≤ G(t)

≤ [2 + 2Kρ+2

a2(ρ+1)(ρ+2) ( 2E(0)
a2 )ρ/2 + 2δk

a2 + k̄
a2q0

+ p1

q0
+ σ

b ]E(t). (25)

Then it follows from (25) that

{1− ε(2 + Kρ+2

(ρ+1)(ρ+2) ( 2E(0)
a2 )

ρ
2

2
a2 + k̄

a2q0
)}E(t) ≤ V (t) ≤ (26)

{1 + ε(2 + Kρ+2

(ρ+1)(ρ+2) ( 2E(0)
a2 )

ρ
2

2
a2 + 2δk

a2 + k̄
a2q0

+ p1

q0
+ σ

b )}E(t) ∀t ≥ 0,

where we assume that

0 < ε < 1

2+ Kρ+2

(ρ+1)(ρ+2)
(

2E(0)

a2 )
ρ
2 2
a2 + k̄

a2q0

, (27)

so that left hand side of (26) is positive. Let

M1 := 2 +
Kρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)
ρ
2

2

a2
+

k̄

a2q0

and

M2 := 2 +
Kρ+2

(ρ+ 1)(ρ+ 2)
(
2E(0)

a2
)
ρ
2

2

a2
+

2δk

a2
+

k̄

a2q0
+
p1

q0
+
σ

b
.

Next, differentiating V (t)(defined by (19)) with respect to t using expression
E′(t)(defined by (12)) and Lemma 3.1, we have

V ′(t) ≤ −2δ

∫
Ω

|u′|2dx− σ(

∫
Ω

∇u · ∇u′dx)2 −
∫

Γ1

p(x)(y′)2dΓ (28)

+ε{ 1

ρ+ 1

∫
Ω

|u′|ρ+2dx+ 2

∫
Γ1

uy′dΓ−
∫

Γ1

q(x)(y)2dΓ

−a2

∫
Ω

|∇u|2dx− b(
∫

Ω

|∇u|2dx)2 +
σ

4
(

∫
Ω

∇u · ∇u′dx)2}.
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Now, using the Cauchy-Schwarz’s inequality, the Poincare inequality, the con-
ditions (7)-(8) and the definition of energy (9), we obtain estimate

|2ε
∫

Γ1

uy′dx| ≤
∫

Γ1

p(x)(y′)2dΓ + ε2
∫

Γ1

1

p(x)
u2dΓ (29)

≤
∫

Γ1

p(x)(y′)2dΓ +
2k̄ε2

a2p0

a2

2

∫
Ω

|∇u|2dx

≤
∫

Γ1

p(x)(y′)2dΓ +
2k̄ε2

a2p0
E(t).

From (28)-(29), we have

V ′(t) ≤ −2δ

∫
Ω

|u′|2dx− σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2

+
ε

ρ+ 1

∫
Ω

|u′|ρ+2dx+
2k̄ε2

a2p0
E(t)− ε−

∫
Γ1

p(x)(y′)2dΓ

−a2ε

∫
Ω

|∇u|2dx− bε(
∫

Ω

|∇u|2dx)2

= −2δ

∫
Ω

|u′|2dx+
ε

ρ+ 1

∫
Ω

|u′|ρ+2dx− σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2

−2ε(1− k̄ε

a2p0
)E(t)− bε

2
(

∫
Ω

|∇u|2dx)2. (30)

Since Lρ+2(Ω)←↩ L2(Ω) and by the definition of energy (11), we note that

||u′||2 ≤ ||u′||ρ+2, (31)

||u′||ρρ+2 ≤ [(ρ+ 2)E(0)]
ρ
ρ+2 . (32)

And also we can take sufficiently small ε satisfy

0 < ε < 4, 0 < ε < a2p0

k̄
, 0 < ε < 2δ(ρ+1)(ρ+2)

3ρ+4 {(ρ+ 2)E(0)}−
ρ
ρ+2 , (33)

since

||u′||ρρ+2 ≤ {(ρ+ 2)E(0)}ρ/(ρ+2), −2δ||u′||2 + ε
3ρ+ 4

(ρ+ 1)(ρ+ 2)
||u′||ρ+2

ρ+2.

From (31)-(33) and (30), we obtain

V ′(t) ≤ −2ε(1− k̄ε

a2p0
)E(t)

−σ(1− ε

4
)(

∫
Ω

∇u · ∇u′dx)2 − bε

2
(

∫
Ω

|∇u|2dx)2

−(2δ

∫
Ω

|u′|2dx− ε(3ρ+ 4)

(ρ+ 1)(ρ+ 2)

∫
Ω

|u′|ρ+2dx)

< −2ε(1− k̄ε

a2p0
)E(t), ∀t > 0, (34)
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where we assume that

0 < ε < min{4,M−1
1 ,

a2p0

k̄
,

2δ(ρ+ 1)(ρ+ 2)

3ρ+ 4
{(ρ+ 2)E(0)}−

ρ
ρ+2 }. (35)

With the help of (26), the above yields the differential inequality

V ′(t) + µV (t) < 0 ∀t ∈ R+, (36)

where

0 < µ =
2ε(a2p0 − k̄ε)
a2p0(1 + εM2)

. (37)

Multiplying (36) by eµt and integrating over the time interval [0, t], we get
the estimate

V (t) < e−µtV (0) ∀t ∈ R+. (38)

Invoking the inequality (26) again in (38), we have

E(t) < Me−µtE(0) ∀t ∈ R+, (39)

where

M =
1 + εM2

1− εM1
> 1. (40)

The finishes the proof of the theorem. �
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