A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo (Professor, School of Mechanical Engineering, Yeungnam University) ;
  • Hwang, Hyun-Chul (Graduate Student, Graduate School of Mechanical Engineering, Yeungnam University) ;
  • Kim, Young-In (Graduate Student, Graduate School of Mechanical Engineering, Yeungnam University)
  • Published : 2001.03.01

Abstract

A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

Keywords

References

  1. Abe, K., Nagano, N. and Kondoh, T., 1992, 'An Improved Model for Prediction of Turbulent Flows with Separation and Reattachment,' Trans. JSME. Ser. B, 58, pp. 3003-3010
  2. Chakravarthy, S. R. and Osher, S., 1983, 'Up-wind Schemes and Boundary Layer Conditions with Applications to Euler Equations in General Geometries,' J. Comp. Phys., Vol. 50, pp. 447-481 https://doi.org/10.1016/0021-9991(83)90106-7
  3. Gorski, J. J., Chakravarthy, S. R. and Goldberg, U. C., 1985, 'High Accuracy TVD Schemes for the Equations of Turbulence,' AIAA Paper, No. 85-1665
  4. Harten, A., 1984, 'On a Class of High Resolution Total-Variation-Stable Finite-Difference Schemes,' SIAM J. Num. Anal., Vol. 21, pp. 1-23 https://doi.org/10.1137/0721001
  5. Hirsch, C., 1990, Numerical Computation of Internal and External Flows, Vol. 2, John Wiley & Sons Ltd.
  6. Song, D. J. and Kim, S. D., 2000, 'A Comparative Numerical Study of Shock/Boundary-Layer Interaction Using Navier-Stokes,' Computational Fluid Dynamics Journal, Vol. 9, to be printed
  7. Computational Fluid Dynamics Journal v.9 A Comparative Numerical Study of Shock/Boundary-Layer Interaction Using Navier-Stokes Song D. J.;Kim S. D.
  8. Kim, S. D., Kwon, C. O., Song, D. J. and Sa, J. Y., 1994, 'Performance Enhancement Study Using Passive Control of Shock-Boundary Layer Interaction in a Transonic/Supersonic Compressor Cascade,' KSME Journal, Vol. 20, No. 9, pp. 2944-2952
  9. Kwon, C. O., Song, D. J. and Kang, S. H., 1994, 'Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method,' KSME Journal, Vol. 18, No. 3, pp. 635-661
  10. Lombard, C. K., Bardina, J., Venkatapathy, E. and Oliger, J., 1983, 'Multi-Dimensional Formulation of CSCM-An Upwind Flux Difference Eigenvector Split Method for the Compressible Navier-Stokes Equations,' AIAA-83-1859cp
  11. Menter, F. R., 1994, 'Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications,' AIAA J., Vol. 32, pp. 1299-1310
  12. J. Comp. Phys. v.99 Upwind Differencing and LU Factorization for Chemical Non-equilibrium Navier-Stokes Equations Shuen J. S.
  13. J. Comp. Phys v.43 Approximate Riemann solvers, Parameter Vectors and Difference Scheme Roe P. L.
  14. J. Comp. Phys. v.99 Upwind Differencing and LU Factorization for Chemical Non-equilibrium Navier-Stokes Equations Shuen J. S.
  15. AIAA J. v.25 Upwind Relaxation Algorithm for the Navier-Stokes Equation Thomas J. L.;Walters R. W.
  16. Lecture Notes in Physics v.170 Flux Vector Splitting for Euler Equations Van Leer. B.
  17. AIAA J. v.26 no.11 Reassessment of the Scale-Determining Equation for Advance Turbulence Models Wilcox D. C.
  18. Turbulence Modeling for CFD Wilcox D. C.
  19. Pulliam, T. H. and Childs, R. E., 1983, 'An Enhanced Version of an Implicit Code for the Euler Equations,' AIAA Paper No. 83-0344
  20. Roe, P. L. 1981, 'Approximate Riemann solvers, Parameter Vectors and Difference Scheme,' J. Comp. Phys., Vol. 43 pp.357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  21. Shuen, J. S., 1992, 'Upwind differencing and LU factorization for chemical nonequilibrium Navier-Stokes equations', J. Comp. Phys., Vol. 99, pp.233-50 https://doi.org/10.1016/0021-9991(92)90205-D
  22. Thomas, J. L. and Walters, R. W., 1987, 'Upwind relaxation algorithms for the Navier-Stokes equations,' AIAA J., Vol. 25, pp. 527-534
  23. Van Leer, B., 1982, 'Flux Vector Splitting for Euler Equations,' Lecture Notes in Physics, Vol. 170, pp. 501-512 https://doi.org/10.1007/3-540-11948-5_66
  24. Wilcox, D. C., 1988, 'Reassessment of the Scale-Determining Equation for Advance Turbulence Models,' AIAA J., Vol. 26, No. 11, pp. 1299-1310
  25. Wilcox, D.C., 1993, 'Turbulence Modeling for CFD,' DCW Industries, Inc., 5354 Palm Drive, La Canada, California
  26. Yee, H. C. and Harten, A., 1987, 'Implicit TVD Schemes for Hyperbolic Conservation Laws in Curvilinear Coordinates,' AIAA J., Vol. 25, No. 2, pp. 266-274
  27. Yee, H. C., 1989, A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods,' NASA Technical Memorandum 101088