• 제목/요약/키워드: viscoelastic boundary

검색결과 135건 처리시간 0.02초

균열이 있는 선형 점탄성체의 변형에너지 방출률 G(t)에 대한 경계요소 해석 (Boundary Element Analysis of Strain Energy Release Rate G(t) for Cracked Viscoelastic Solids)

  • 박명규;이상순;서창민
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2072-2078
    • /
    • 2003
  • In this paper, the boundary element analysis of viscoelastic strain energy release rate G(t) for the cracked linear viscoelastic solids has been attempted. This study proposes the G(t) equation and the calculating method of G(t) by time-domain boundary element analysis for the viscoelastic solids. The G(t) is defined as the derivative of the viscoelastic potential energy II(t) with respect to crack length a. Two example problems are presented to show the applicability of the proposed method to the analysis of the cracked linear viscoelastic solids. Numerical results of example problems show the accuracy and effectiveness of the proposed method.

경계요소법을 사용한 선형 점탄성문제의 해석 (Analysis of linear viscoelastic problems using boundary element method)

  • 심우진;곽병만
    • 대한기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.322-330
    • /
    • 1987
  • 본 논문에서는 전자의 해석중에서 유한요소와 경계요소의 결합으로 생기는 문 제점 그리고 증가된 자요도로 인한 경제성의 손실 등을 고려하여 2차의 경계요소만을 사용한 경계요소법을 시도하였으며 다른 형태의 점탄성기본해 및 점탄성 경계적분식을 유도 사용하였다. 그리고 시도된 방법의 타당성을 보이기 위하여 사용된 예제들(평 면변형문제)의 이론해를 상응원리를 사용하여 유도하였으며 이를 수치결과와 비교하여 근사해의 정확함을 알 수가 있었다.

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

경계요소법에 의한 선형 점탄성체의 해석 (An Analysis of Viscoelastic Problems by Boundary Element Method)

  • 이상순;조덕상;손용수
    • 전산구조공학
    • /
    • 제7권2호
    • /
    • pp.69-75
    • /
    • 1994
  • 시간영역에서는 경계요소법을 이용하여 실제점탄성체에 대한 응력 및 변위 해석과정을 논의하였다. 기본해와 응력커널들은 탄성-점탄성 대응원리를 사용하여 구하였다. 이완함수는 지수함수들의 합으로 전개되고, 변형된 기본해와 응력커널들은 실제시간 공간으로 수치적인 방법에 의해 전환된다. 제안된 과정정은 수치해석을 수행하는데 큰 노력을 요하지 않으며, 실제점탄성체 해석에 응용될 수 있다. 예저의 결과들은 제시된 방법의 효율성과 응용 가능성을 보여준다.

  • PDF

수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석 (Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption)

  • 이상순
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

계면균열해석에 대한 경계요소법의 응용 (II) : 탄성-점탄성 문제 (Application of Boundary Element Methods to Interface Crack Problems (II) : Elastic -Viscoelastic Problem)

  • 이상순;김정규;김태형;박건우;황종근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 1996
  • The stress intensity factor for an interface crack in dissimilar elastic and viscoelastic materials is derived and the time-domain boundary element analysis is performed. Numerical results show that the proposed method is very useful for the analysis of the interface crack in elastic and viscoelastic bimaterials.

  • PDF

UNIFORM DECAY OF SOLUTIONS FOR VISCOELASTIC PROBLEMS

  • Bae, Jeong-Ja
    • East Asian mathematical journal
    • /
    • 제19권2호
    • /
    • pp.189-205
    • /
    • 2003
  • In this paper we prove the existence of solution and uniform decay rates of the energy to viscoelastic problems with nonlinear boundary damping term. To obtain the existence of solutions, we use Faedo-Galerkin's approximation, and also to show the uniform stabilization we use the perturbed energy method.

  • PDF

Viscoelastic Analysis of Osmotic Blistering Behavior of Coating Film

  • Lee, Sang Soon;Park, Myung Kyu
    • Corrosion Science and Technology
    • /
    • 제8권1호
    • /
    • pp.11-14
    • /
    • 2009
  • The osmotic blistering behavior of polymeric coating film which is in contact with an aqueous environment has been investigated. In this study, the coating film has been assumed to be linearly viscoelastic. Interfacial stresses induced in a laminate model consisting of the viscoelastic film and the elastic substrate as the film absorbs moisture from the ambient environment have been investigated using the time-domain boundary element method. The overall stress intensity factor for interfacial cracks subjected to a uniform osmotic pressure has been computed using the tractions at the crack tip node. The magnitude of stress intensity factors decreases with time due to viscoelastic relaxation, but remains constant at large times.